
D ATA I N T E G R AT I O N I N T H E R A I L D O M A I N

by

christopher robert morris

A thesis submitted to the University of Birmingham for the degree

of DOCTOR OF PHILOSOPHY

Birmingham Centre for Rail Research and Education

Electronic, Electrical and Systems Engineering

University of Birmingham

December 2017

Christopher Robert Morris: Data integration in the Rail Domain,

A thesis submitted to the University of Birmingham for the degree of

DOCTOR OF PHILOSOPHY © December 2017

supervisor:

Dr John Easton

A B S T R A C T

The exchange of information is crucial to the operation of railways;

starting with the distribution of timetables, information must con-

stantly be exchanged in any railway network. The slow evolution of

the information environment within the rail industry has resulted in

the existence of a diverse range of systems, only able to exchange

information essential to railway operations. Were the cost of data in-

tegration reduced, then further cost reductions and improvements to

customer service would follow as barriers to the adoption of other

technologies are removed.

The need for data integration has already been studied extensively

and has been included in the UK industry’s rail technical strategy,

however, despite it’s identification as a key technique for improving

integration, uptake of ontology remains limited. This thesis considers

techniques to reduce barriers to the take up of ontology in the UK

rail industry, and presents a case study in which these techniques are

applied. Amongst the key barriers to uptake identified are a lack of

software engineers with ontology experience, and the diverse inform-

ation environment within the rail domain. Techniques to overcomes

these barriers using software based tools are considered, and example

tools produced which aid the overcoming of these barriers.

The case study presented is of a degraded mode signalling system,

drawing data from many sources, made more flexible in it’s select of

the available datasources by use of ontology. Tools created to improve

data integration are employed in this commercial project, successfully

combing signalling data with (simulated) train positioning data.

iii

A C K N O W L E D G E M E N T S

My thanks to Network Rail for funding the first three years of this

project and to the Birmingham Centre for Railway Research and Edu-

cation for funding the remainder. I would like to thank my long suffer-

ing supervisor for his patient support both whilst writing this thesis

and over the duration of this PhD, without which I would certainly

never have completed it. I would also like to extend my thanks to my

fiancée, family and friends for their invaluable support whilst I write

this document.

iv

C O N T E N T S

i thesis 1

1 introduction 2

1.1 Overview . 2

1.1.1 What is ontology 3

1.1.2 Barriers to adoption 5

1.2 Aims and Objectives . 6

1.3 Thesis organisation . 6

1.4 Papers published over the course of this research . . . 7

2 literature review 9

2.1 Current State of Data Integration in the Rail Domain . 9

2.1.1 Information Security in the Rail Domain 13

2.2 Ontology . 14

2.2.1 Ontology Reasoning 15

2.2.2 Ontology related terminology 16

2.3 Standards for data integration 19

2.3.1 Basic Standards 19

2.4 Software tools . 24

2.5 Benefits of ontology for data integration 27

2.5.1 Multi-modal transport 29

2.6 Data integration in other industries 31

2.6.1 Industries implementing Ontology 31

2.6.2 Other Domains 35

2.6.3 Virtual Personal Assistants 37

2.7 Progress towards improved data integration in the rail

domain . 37

2.7.1 Non-ontology data integration 37

v

contents vi

2.7.2 Ontology based integration within the rail domain 41

2.8 Conclusions . 45

3 problem statement 47

4 schedule processing tool 53

4.1 Introduction . 53

4.2 Transition to Linked Data 54

4.2.1 Extending the ontology 55

4.2.2 Tools for processing A-Box data 56

4.3 Data to be imported . 57

4.3.1 Legacy Resource Format 58

4.4 General Software Design Patterns 61

4.5 Software implementation 62

4.5.1 Hardware Specification 65

4.6 Manual Data Entry Tool 68

4.6.1 Manual Data Entry Tool: Implementation 69

4.7 Results . 71

4.8 Conclusions . 74

4.9 Further Work . 75

5 use of a middleware layer with ontologies 76

5.1 Introduction . 76

5.1.1 Questions Considered 77

5.1.2 Roles . 78

5.1.3 Data Volumes . 79

5.2 Functionality . 80

5.2.1 Brokering: acting as an intermediary between

client and server 80

5.2.2 Datastore aggregation 81

5.2.3 Stored Procedures 82

5.2.4 Information Security 83

5.2.5 Centralising Common Functionality 84

contents vii

5.3 Middleware Design Patterns 85

5.4 Implementation . 85

5.4.1 Modular Structure 85

5.4.2 RacoonMiddleware 86

5.4.3 MiddlewareBussinessObjects 93

5.4.4 Datastore connections 95

5.4.5 Administration Tools 97

5.5 Access Control Implementation 98

5.6 Conclusions . 100

5.7 Further work . 102

5.7.1 Outstanding Questions 102

6 combined alternative positioning and signalling

system 104

6.1 Introduction . 104

6.1.1 Commercial Partners 105

6.1.2 The commercial case for degraded mode sig-

nalling . 105

6.1.3 Objectives . 106

6.1.4 Client Requirements 107

6.1.5 Questions Considered 108

6.2 System design and specification 110

6.2.1 Demonstrated scenarios 110

6.2.2 System Architecture 112

6.3 Data Sources . 117

6.4 Role of Ontology . 121

6.5 Demonstrator Implementation 122

6.5.1 Demonstrator One 122

6.5.2 Demonstrator Two 132

6.6 Conclusions . 135

6.6.1 Benefits of Ontology 135

6.6.2 Role of tools to connect to the ontology 136

contents viii

6.6.3 Questions Answered 137

6.7 Further Work . 140

6.7.1 Changing triple store 140

7 conclusions and further work 141

7.1 Response to Research Questions 141

7.1.1 Given the diverse information environment within

the rail industry, how can heterogeneous data-

sources be combined, where there is value in so

doing? . 142

7.1.2 Given the current shortage of engineers with ex-

perience editing or connecting to ontologies, is

it possible to create tools which improve their

uptake and adoption? 143

7.1.3 Given that many stakeholders can benefit from

combining multiple data sources, what tech-

niques enable this? 144

7.1.4 Can an intermediary layer isolate information

systems from changes to datastore interfaces? . 145

7.1.5 Given the velocity and volume of data within

the rail domain, can an ontology based archi-

tecture be deployed on the scale of a national

rail network? . 145

7.1.6 How can datastore security be managed within

the setting of an ontology and IT infrastructure? 146

7.2 Further Work . 146

ii appendix 148

a appendix a manual data entry tool gui 149

a.1 Add an item . 150

b stored procedure 152

contents ix

bibliography 155

L I S T O F F I G U R E S

Figure 1.1 Tabular Data . 4

Figure 1.2 Ontology format 5

Figure 2.1 Triple . 16

Figure 2.2 Racoon Layers 44

Figure 4.1 Items located using a TIPLOC - one of the loc-

ation codes. 62

Figure 4.2 Business Object inheritance 64

Figure 4.3 Data conversion work-flow 67

Figure 4.4 Schedule parsing tool interface 68

Figure 4.5 Manual Data Entry tool work flow for adding

individuals to the ABox 70

Figure 4.6 Time to output turtle files 73

Figure 5.1 The role of the Middleware 80

Figure 5.2 The interactions between the middleware mod-

ules, both internal and external 87

Figure 5.3 The response types returned by the RaCoOn

Middleware . 89

Figure 5.4 The interfaces implemented by webservice re-

sponses . 90

Figure 5.5 Selected webservices 91

Figure 5.6 Authentication work-flow 99

Figure 5.7 Use of authentication token 100

Figure 6.1 Full System Dataflows 113

Figure 6.2 Demonstrator Two Dataflows. Note that links

in green are demonstration only - not part of

the final solution 116

x

Figure 6.3 All Possible Data Sources for integration . . . 118

Figure 6.4 Realtime Train Position via BRaVE 124

Figure 6.5 Demonstrator One 125

Figure 6.6 Demonstrator One Data-flows 127

Figure 6.7 Demonstrator Two - Stage One 133

Figure 6.8 Demonstrator Two - Stage Two 133

Figure 6.9 Demonstrator Two - Stage Three 133

Figure 6.10 Demonstator Two - RS232 Bus 134

Figure A.1 Manual Data Entry tool welcome and login

screens . 149

Figure A.2 Manual Data Entry Tool 150

Figure A.3 Manual Data Entry Tool Add item stage 1 . . . 150

Figure A.4 Manual Data Entry Tool Add item stage 2 . . . 151

L I S T O F TA B L E S

L I S T I N G S

Listing 2.1 A specific car forming part of a Class 390, rep-

resented in turtle 20

Listing 2.2 SPARQL to select all signals from a datastore.

Note that this query would potentially return

a very large number of results. 23

Listing 2.3 A German rail locomotive, as defined in railML 39

xi

Listing 4.1 CIF file example 59

Listing 5.1 The IQuery interface, which must be imple-

mented by all executable queries 92

Listing 5.2 Linking of Balises to BaliseGroups 95

Listing 6.1 SPARQL to select a signal location from its

identifier. Note some of the features here are

Stardog specific, in particular the passing in of

the @sigid parameter 126

Listing B.1 The StoredProcedure class. Constructors, private

fields and utility methods have been omitted

for brevity. 152

A C R O N Y M S

API Application Programming Interface

BBC British Broadcasting Corporation

BFO Basic Formal Ontology

CRUD Create, Read, Update and Delete

CSV Comma Separated Variable

DDL Dynamic Link Library

DL Description Logic

ERTMS The European Railway Traffic Management System

ETCS European Train Control System

GO Gene Ontology

xii

acronyms xiii

GNSS Global Navigation Satellite System

GPS Global Positioning System

GTFS General Transit Feed Specification

ICT Information Computation Technology

IDE Integrated Development Environment

IRS International Railway Standard

ISO international Standards Organisation

LADS Linear Asset Decision Support

NMS .Net Messaging

ORBIS Offering Rail Better Information Services

ORR Office of Road and Rail

OSI Open System Interconnection

OWL Web Ontology Language

RDG Rail Delivery Group

RDF Resource Description Framework

RS Recommended Standard

RSSB Railway Safety and Standards Board

SPARQL SPARQL Protocol and RDF Query Language

SGML Standard Generalized Markup Language

SUMO Suggested Upper Merged Ontology

TSLG Technical Strategy Leadership Group

TAF Telematic Application for Freight

acronyms xiv

TAP Telematic Application for Passengers

TSI Technical Specifications for Interoperability

UIC Internal Union of Railways

UML Unified Modelling Language

UK United Kingdom

URI Unique Resource Identifier

URL Unique Resource Locator

WCF Windows Commication Foundation

XML eXtensible Mark-up Language

Part I

T H E S I S

1
I N T R O D U C T I O N

1.1 overview

The efficient operation of railways depends upon the exchange of

data, from passenger information such as timetables and delays to op-

erating data such as train locations through to longer term planning

operational data such as the projected cost of repairing equipment.

Over time this data has been exchanged in different ways; from pi-

oneering use of the telegraph for signalling, through to the large but

siloed data stores we see today. As railway usage has increased1 and

goals have been set to increase it further2, as a means of reducing

the amount of carbon used by the economy, so more efficient data

transfer is required.

Presently systems are integrated on a costly system by system basis,

for example using the Technical Standards for Interoperability at

points where the rail network crosses national boundaries within the

European Union, or the Linear Asset Decision System for rail main-

tenance information within the UK. This means that most data gener-

ated are in proprietary formats and, as found by Köpf (2010), ‘most

data are archived for “future use” and never looked at’. Poor data in-

tegration leads to increased costs, both directly incurred integrating

systems and indirectly opportunities to save money or improve ser-

1 Passenger travel has risen 0.8% year on year, see section 2.1 and (Office of Road &
Rail, 2016) for further details

2 For example the European Union transport white paper, European Commission
(2011) sets several long term goals for 2050 with the aim of reducing carbon, in-
cluding ‘30% of road freight over 300 km should shift to other modes such as rail or
waterborne transport by 2030, and more than 50% by 2050’.

2

1.1 overview 3

vice are missed. Conversely if data is well integrated ridership (and

hence income) can be increased with improved passenger informa-

tion, maintenance costs can be lowered using predictive maintenance,

more accurate cost projections can be made.

The need for improved integration has been recognised by the UK

government which stated in the Rail Technical Strategy, a report by

the Technical Strategy Leadership Group (2012), it aspired to: “[make]

better use of the vast amounts of collected data”. The follow-up to the

Rail Technical Strategy by the Rail Delivery Group (2017), which was

reporting progress towards this goal, has a similar target: “to share

data effectively, asset owners need to establish data sharing principles

and build a common architecture for sensor communication”.

Other studies, summarised in subsection 2.7.2, have examined the

area of data integration in the rail domain and found ontology to be a

useful tool. As a result several data models have been developed cov-

ering the rail domain, however, take up by industry remains limited.

Given that the consensus of the literature ((Köpf, 2010), (Gogos and

Letellier, 2016), (Verstichel et al., 2015)) is that use of ontology will

both save money and improve customer service, it seems paradoxical

that take up remains very limited. Improvements in customer inform-

ation, the enabling of techniques such as predictive maintenance and

the reduced ongoing cost of data integration are all made possible by

using ontology for data integration. This thesis will investigate ways

in which ontology could be more effectively used by industry.

1.1.1 What is ontology

Ontology has different definitions dependant upon the field in which

it is used. In philosophy the definition given by the Oxford English

Dictionary: ‘the branch of metaphysics dealing with the nature of

1.1 overview 4

being’ applies. This definition, whilst useful, differs somewhat from

that used within computer science. In computer science ontologies

are applied as a means of storing not just data, but information, that

is data with meaning. In this domain the definition normally cited is:

An ontology is an explicit specification of a conceptualization.

Gruber (1993)

This definition alone requires further explanation, which is provided

by the author, who defines a conceptualisation as:

The objects, concepts, and other entities that are presumed to

exist in some area of interest and the relationships that hold

them.

This use of “Conceptualization” is in turn taken from Genesereth

and Nilsson (1987), who state that it offers an explicit view of the

world. This is helpful in computer science because it allows software

to work not just with data, but with knowledge. This knowledge in

turn adds context to the information thus making information ex-

change easier.

Working with information, as opposed to data, is useful for integ-

ration because once one stores the meaning of the data alongside the

data itself it is much easier to integrate that data. Consider Figure 1.1;

without any further context it is meaningless, just a list of nonsense

words.

Figure 1.1: Tabular Data

1.1 overview 5

When however you consider Figure 1.2 the meaning of the same

data as shown in Figure 1.1 becomes clear; it shows characters from

a popular fantasy novel.

Figure 1.2: Ontology format

The intention is that by storing the meaning alongside the data it is

straightforward, often not even requiring of human intervention, to

combine that data with other data stored as information. Whilst this

is true of any predefined schema the benefit of this approach is that

it does not require such a central standards body to define a schema,

instead any stakeholder can create data in this format, extending it

to suit their needs, and still be able to integrate it with other data, al-

lowing new data to be represented as and when it becomes available,

without a lengthy approval process.

1.1.2 Barriers to adoption

The fact that ontologies exist, and yet their adoption remains limited,

implies that there are barriers to industry adoption of ontology. In

the past technological maturity has been a serious obstacle; reason-

ing over large data stores is computationally expensive and neither

robust software optimised for this task, nor hardware capable of run-

ning it has been available. Now the requisite hardware is available

1.2 aims and objectives 6

at a commodity price point and competing vendors for the relevant

datastores exist in the marketplace so these barriers are eliminated.

However a significant obstacle remains, in the form of a shortage of

skilled personnel, ontology specialists and means of handling very

high frequency data.

1.2 aims and objectives

This thesis will first investigate the current state of data integration

in the rail domain, considering both solutions that employ ontology

alongside more traditional techniques. The benefits of using ontology

for data integration in the rail domain will then be assessed, taking

into account progress made in other domains. This thesis will then

examine the barriers to using ontology for data integration in the

rail domain, before considering methods for overcoming those barri-

ers. This thesis will then summarise tooling created to overcome the

known barriers to adoption, and how these may be used within a

typical industry workflow.

1.3 thesis organisation

This document is organised as follows:

• Chapter one is this introduction, which aims to set out the main

themes of the thesis;

• Chapter two provides a review of the available literature on the

topics covered by this thesis. In particular, the current situation

with regards to data integration in the rail domain is examined,

as are successful examples of data integration from other indus-

tries;

1.4 papers published over the course of this research 7

• Chapter three draws conclusions from the current situation out

lined in chapter two and gives a more precise definition of the

questions this thesis will answer;

• Chapter four investigates a typical industry data source and

how it can be made available in a linked format;

• Chapter five investigates techniques for working with linked

data, not requiring of skilled personnel;

• Chapter six investigates how multiple data sources can be

brought together in an industry context;

• Chapter seven draws conclusions as to how data integration can

be improved in the UK rail industry.

1.4 papers published over the course of this research

The work presented in this thesis has been presented, in part, at a

number of conferences.

• Applications of Linked Data in the Rail Domain

IEEE International Conference on Big Data 2014

This paper presents early findings from a larger study, into the

use of linked data in the rail domain. The study and other liter-

ature has shown there to be benefits from improved integration

of data in this domain and proposes that linked data in gen-

eral and ontology in particular will address this. The paper will

set out the current state of data integration in the British rail

domain, highlighting issues found there. The manner in which

linked data is employed in the broader transport domain will

then be examined along with previous work pertaining to the

rail domain.

1.4 papers published over the course of this research 8

• Ontology in the Rail Domain

Knowledge Engineering and Ontology Development (KEOD) 2015

This paper presents the The Railway Core Ontologies (RaCoOn),

a group of related ontologies designed to model the rail do-

main in detail. The purpose of these ontologies is to enable im-

proved data integration in the rail domain, which will deliver

business benefits in the form of improved customer perceptions

and more efficient use of the rail network. The modularity of the

ontologies allows for both detailed modelling of the domain at

a high level and the storing of instance data at lower levels. It

concludes that the benefits of improved rail data integration are

best realised through the use of the railway core ontologies.

• FROM DATA TO INFORMATION: PROVISION OF RAILWAY

DATA TO PASSENGERS IN THE INFORMATION AGE

World Congress of Rail Research 2016

This paper puts forward the case for using RaCoOn for data in-

tegration in the the rail domain and sets out tools for expanding

these ontologies.

2
L I T E R AT U R E R E V I E W

This literature review will first summarise the current state of the art

in data integration within the rail domain, before moving on to dis-

cuss the costs and benefits of greater integration. Linked data and on-

tology will be introduced as a means of achieving improved integra-

tion between data resources, and cases studies from other industries,

which have adopted ontology for integration will be examined and

conclusions drawn. The discussion will conclude with a summary of

how the lessons learnt may be applied to GB rail.

In the last twenty years the world outside of the rail industry

has changed significantly, with information communication tech-

nology becoming all pervasive, however the rail industry has been

slower to adapt. Although customer information is now commonly

provided electronically and commodity software platforms provide

multimodal journey planning, these services are only as good as the

data fed to them. Within the industry however ICT systems remain

siloed, with advances made in the gathering of data but exploitation

being limited by system boundaries and commercial barriers.

2.1 current state of data integration in the rail do-

main

The McNulty report, a study into value for money offered by GBRail,

(Department for Transport, 2011), found that:

9

2.1 current state of data integration in the rail domain 10

The effectiveness of the industry’s IS is inhibited by a suite of

legacy systems that are expensive to run, unable to commu-

nicate with new technology and encourage users to develop a

wide range of bespoke local systems to overcome limitations.

Many legacy systems were created and managed in company

silos, with only a few systems crossing industry boundaries.

The report goes on to conclude:

Information systems are at the heart of a more efficient rail-

way that delivers value for money. Allowing the railway’s exist-

ing IS to continue unreconstructed will increase cost, reduce

efficiency and undermine customer service. In contrast, the

replacement of legacy systems and the exploitation of new

technology will generate improved value for money.

Also proposed in the report was the creation of the Rail Delivery

Group, an industry body representing infrastructure, freight, and pas-

senger operators1. Another report, created as a response to the The

Rail Technical Strategy (Technical Strategy Leadership Group, 2012),

identifies a need for better data integration, stating that:

Over 130 information systems maintained by approximately

20 suppliers were in operation in 2011. Maintaining individual

legacy systems is expensive and inefficient. Information cannot

be shared or exploited efficiently and this inhibits whole-system

approaches for technology-based improvements.

The Rail Delivery Group (2017) proposes in the ‘Capability Deliv-

ery Plan’ that: ‘Standards will allow information to be interpreted

and combined more easily delivering new insights and intelligence

to the industry.’. At the present time this goal is still outstanding.

1 Further information may be found at: http://orr.gov.uk/about-orr/
who-we-work-with/industry-organisations/rail-delivery-group

http://orr.gov.uk/about-orr/who-we-work-with/industry-organisations/rail-delivery-group
http://orr.gov.uk/about-orr/who-we-work-with/industry-organisations/rail-delivery-group

2.1 current state of data integration in the rail domain 11

The issue of lock in to proprietary systems and the creation of data

silos is examined in Easton et al. (2013), which states that

Where electronic data exchange standards for rail do exist,

many are proprietary binary formats used to provide point-to-

point interfaces between specific systems and not intended for

use in a generalised context.

Verstichel, Ongenae and Loeve (2011a) finds a need for improved data

integration in the larger European rail domain: “Industry-wide integ-

ration in the information domain is only in its infancy. From an ef-

ficiency point of view, this field leaves much room for improvement

(as did the integration in the mechanical and electrical domain). ”

Morris, Easton and Roberts (2014) discusses the rising rail ridership

in the UK, along with the need for improved efficiency. This trend

continues as shown by the official statistics from the Office of Road

and Rail, Office of Road & Rail (2016), with 1.7 billion journeys having

been made in the financial year 2016-17, up 0.8% from the previous

financial year; this marks the highest ever number of journeys on

the UK rail network, since statistics started being collected in 1950.

However it should be noted that this is also the smallest year on year

increase since 2009-10.

Since the benefits of improved data integration have been identi-

fied, Network Rail the UK infrastructure operator, has taken steps to

improve data integration using conventional means. A good example

of this is the Linear Asset Decision Support solution, internally re-

ferred to as LADS2, which brings together fourteen asset information

systems, including the Rail Defect Management System, as part of

the Offering Rail Better Information Services (ORBIS) program. This

system has two front-ends; a hand-held system which can be used

on ruggedized tablets track side to access information about nearby

2 technically, LADS is an implementation by Capgemini of Bently Optram

2.1 current state of data integration in the rail domain 12

assets, and a desktop version for planning purposes. The system can

show amongst other things:

• Video (or stills) of the track, taken from New Measurement

Train;

• Track Geometry measurements, also from the New Measure-

ment Train;

• Track defect data and reports;

• Asset Locations;

• Asset type and age;

• Maintenance history.

These datasets are shown together in a “swim lane” view. This pro-

prietary system covers the asset maintenance domain and will need

extensive development to add new data sources or outputs.

The amount of data used within the rail domain has increased

rapidly with time. As it has become possible to collect more data

on asset condition the volumes of data relating to each asset have

grown, for example the work done in response to the ‘FuTRO Univer-

sal Data Challenge’ reported by Tutcher (2015b) suggests that large

volumes of data3 would need to be recorded every time a sets of

points, also referred to as switches or turnouts, moved anywhere on

the rail network. Techniques such as alternating current field meas-

urement sensor (ACFM) as discussed by Rowshandel et al. (2013) also

produce large volumes of data, in this case relating to rail condition.

Others sources of high volumes of data include ground penetrating

radar, to assess trackbed condition, as reported by Eriksen, Gascoyne

and Al-Nuaimy (2004). An assessment of the growing volume of data

3 up to‘15 seconds of data, sampled at 4kHz, for eight sensors’, though this can be
down-sampled.

2.1 current state of data integration in the rail domain 13

in the rail domain in an American context was performed by Zaremb-

ski (2014), which finds condition monitoring to be a likely source

of growth. The European rail network is considered in Núñez et al.

(2014), which also studies data used for maintenance in the rail do-

main, taking as a case study the Dutch Rail Network. In the UK large

volumes of data are collected by the New Measurement Train and

significant value could be added to this if it were easier to match

readings with the assets to which they pertained.

The current work flow with regards wheel impact load detection

is an example of less successful integration, which was described

by Tutcher (2015a) as “several interfaces between machine and hu-

man operator railway data management exist as wheel impact data

is taken from its silo, manually compared to train running inform-

ation in another silo, and finally input into a maintenance system

silo”. Wheel impact load is important because it detects when train

wheels are damaged, thus in turn causing damage to the track and

train alongside causing discomfort to passengers.

2.1.1 Information Security in the Rail Domain

Alongside the growth in data stored electronically comes a second, re-

lated, issue; that of IT security. As data has become more distributed

and greater use is made of the public internet further precautions are

required. The importance of this in the rail domain is discussed by

Department for Transport (2016), and further discussions in the con-

text of the cybersecurity of signalling systems may be found in Bloom

Field et al. (2016). In Chen et al. (2015) the security of passenger in-

formation systems is considered, alongside the broader rail cyberse-

curity. Information security is not the primary focus of this project,

2.2 ontology 14

rather, it is important that it be considered in any project working

with large amounts of data.

2.2 ontology

In chapter 1 of this document ontology was defined as:

an explicit specification of a conceptualization

The author of that quote, Tom Gruber, has gone on to provide a more

complete definition in (Gruber, 2009a).

• An ontology defines (specifies) the concepts, relation-

ships, and other distinctions that are relevant for mod-

elling a domain.

• The specification takes the form of the definitions of rep-

resentational vocabulary (classes, relations, and so forth),

which provide meanings for the vocabulary and formal

constraints on its coherent use

Data integration was one of the first benefits of ontology to be iden-

tified, as early as 1991 and was already under discussion (Siegel and

Madnick, 1991), along with several other uses cases that remain rel-

evant today. Siegel and Madnick (1991) aimed to enable the ‘integ-

ration of multiple disparate database systems’ by using a “common

metadata vocabulary” and suggested that ‘global ontology to provide

the common vocabulary and all component systems must provide

semantic mappings to that global ontology’. This approach remains

broadly valid today, though the available implementation toolsets

have improved significantly.

An ontology could be described a means of storing a view of the

world, in this context, it stores information, not simply data. Beyond

that ontologies allow reasoning to be performed and new information

2.2 ontology 15

to be inferred from the facts and rules it contains. This can be used

simply to categorise objects, itself a powerful mechanism e.g. things

may be classified as faulty or working, according to their properties.

Rules can however be used to abstract other logic; would it be wise

to offer insurance based on the provided circumstances for example.

Reasoning allows strict mathematical logic to produce results, for ex-

ample: ∀L∃D∩ T where L is life, D is Death and T is taxes represents

the proverb: ‘In this world nothing can be said to be certain, except

death and taxes’. The development of ontologies from First Order Lo-

gic is covered in depth in by The Description Logic Handbook: Theory,

Implementation and Applications (2007).

2.2.1 Ontology Reasoning

In the context of computational ontology, reasoning is used to imply

facts not originally known or stored based on existing facts in the

triple store. For example, if you know that every human has exactly

one biological mother who is female and one father who is male,

persons F and M are C’s parents, and that person M is male, you

may infer that person F is female. This is discussed in depth in sec-

tion 2.4.5 of Tutcher (2015a). Reasoning can also be used to ascertain

whether the concepts from two different models represent the same

thing, or for classification of objects against a hierarchy within the

ontology model. Reasoning has been used for purposes as diverse as

ascertaining the correct pension to pay someone, based on their em-

ployment history, through to assigning biological systems to groups.

In the rail context it has been used in multiple projects to ascertain if

a combination of circumstances implies a fault.

2.2 ontology 16

2.2.2 Ontology related terminology

When discussing ontology the thesis will use the following termino-

logy:

2.2.2.1 Triples

When ontologies are stored electronically they take the form of triples,

a statement broken into three parts, the subject, the predicate and the

object as illustrated in Figure 2.1. Anything referred to by a triple

should have a unique identifier, known in this context as a Uniform

Resource Identifier or URI. The W3C recommends that these URI’s

take the form of Uniform Resource Locators commonly abbreviated

URL and that further more these Uniform Resource Locators point to

a resolvable domain name. Whilst this is considered best practice it

is entirely possible to create an ontology were the URIs are not URLs.

Each part of a triple can be a URI itself, however, it is also possible for

the object of a triple to be a simple value or a “blank node”, that is

a node with no name, used to link to further nodes. In this context a

hasMother

Predicate

Cersei
Lannister

Object

Joffrey
Baratheon

Subject

`

Figure 2.1: The parts of a triple. Note that the content of each box is com-
monly a URI

triple can also be thought of as a directed graph, in which the Subject

and Object are both nodes.

2.2.2.2 Tbox and ABox

Throughout this discussion the terms “TBox” and “ABox” will be

used. The TBox or “Terminology” box refers to that part of the onto-

2.2 ontology 17

logy that holds the definitions and concepts. The statement “Humans

are a type of animal” would generally belong in the TBox of an on-

tology. The ABox or assertion box holds assertions made using that

knowledge, one such assertion could be ‘Chris Morris is a human’. In

a relational database terms TBoxes and ABoxes are comparable to the

schema (TBox) and the data (ABox).

2.2.2.3 Expressivity

Ontology expressivity is the complexity of the concepts that can be

represented in a given form. Expressivity is generally described us-

ing Description Logic (referred to in the literature as a DL), which

are in turn decidable fragments of First-Order Logic. Different DLs

represent different sub-sets of First-Order Logic and are annotated

according to how expensive they are. Horridge et al. (2012) discusses

some common levels of expressivity, in section 2 of the paper:

• AL Is amongst the most limited, supporting:

– Intersection ∩;

– Universal quantification (All Value From) ∀;

– Limited existential quantification, with restrictions ∃ ;

– Atomic Negation ¬ .

The limitations of AL description logic restrict the complexity

of the concepts that can be encoded and, as such this DL is

not commonly used, aside from as a basis for more complete

description logics.

• With Full Negation this becomes ALC. This means that any

concept, not just atomic concepts (generally variables in first

order logic), can be negated. Certain approaches, such as that

discussed by Meyer et al. (2006) limit themselves to the ALC

2.2 ontology 18

description logic, since most operations can be performed on it

in polynomial time.

• Adding hierarchy - sub-properties makes this ALCH

• Adding nominals (only one can exist), inverse properties (lifts is

the inverse of liftedBy for example) and numerical restrictions

gives - ALCHOIN.

• Add transitive properties, for example ‘if x is a part of y and y

is a part z then x is a part of z’ gives SHOIN, because ALC with

transitive properties is abbreviated S. As discussed by Horrocks

(2006) SHOIN underpins OWL 1 and thus is very widely used.

More expressive DLs exist, but increasing the complexity of the con-

cepts expressed also increases the complexity (and thus computa-

tional time required) of reasoning. A more expressive DL still, SROIQ,

is used as the basis of the OWL 2 (discussed in section 2.3). This DL

allows for properties to be, disjoint, reflexive, irreflexive or antisym-

metric as well as all the properties found in SHOIN. For a descrip-

tion of SROIQ see Horridge et al. (2012) section 2 or for greater depth:

Horrocks, Kutz and Sattler (2006). A tool for the comparison of vari-

ous description logics may be found at: http://www.cs.man.ac.uk/

~ezolin/dl/.

Choice of level of expressivity is very important in ontology design

and is considered in depth by Tutcher (2015a). In that work the danger

of allowing too much expressivity and making it either difficult or

impossible to use automated tools to carry out reasoning is discussed.

Since it is expected that reasoning will be used over ontologies in the

rail domain, the question of expressivity will be further considered

in the remainder of this thesis.

http://www.cs.man.ac.uk/~ezolin/dl/
http://www.cs.man.ac.uk/~ezolin/dl/

2.3 standards for data integration 19

2.2.2.4 Upper Ontologies

When technology first made it possible to store logic and ontologies

electronically and to perform reasoning computationally many stud-

ies proposed upper ontologies. That is ontologies that, in keeping

with the philosophical basis of the term, aimed to be ‘Theories of

everything’, to hold all of humanities knowledge. This resulted in sev-

eral projects; foremost amongst the early studies was SUMO, the sug-

gested upper merged ontology, proposed by Niles, Pease and Niles

Ian, 2001. Latterly a number of other upper ontologies have emerged,

such as BFO or basic formal ontology, which is considered in the con-

text of the biomedical domain by Grenon, Smith and Goldberg (2004).

The advantage of using a common upper ontology is improved integ-

ration between different ontologies. It can be seen that whilst this idea is

much discussed in the literature examples of its’ practical implement-

ation are harder to find.

2.3 standards for data integration

One domain in which significant progress has been made is that of

standards for interoperability of ontologies and the formats in which

they are stored.

2.3.1 Basic Standards

There are several low level standards upon which the other standards

this document will consider are built.

2.3.1.1 XML

Several current standards in use within the industry are based upon

Extensible Mark-up Language (XML). XML is defined by W3.org

2.3 standards for data integration 20

(2013) as ‘application profile or restricted form of SGML, the Stand-

ard Generalized Markup Language [ISO 8879]’. Standard Generalized

Markup Language (SGML) is in turn a means of specifying a doc-

ument structure, of which HTML (Hyper Text Markup Language)

is the best known. XML is a data description language which uses

SGML, effectively it is a way of specifying a data transfer. It is com-

paratively verbose and can, though does not have to be designed such

that it is human readable.

2.3.1.2 Resource Description Framework

The Resource Description Framework, here on referred to as RDF, is

a standard that can be used for the interchange of linked data and on-

tologies. Defined by the W3C a guide is available in Wood, Lanthaler

and Cyganiak (2014). RDF was initially used primarily for the provi-

sion of metadata from conventional websites and is still commonly

used within the semantic web. RDF forms the basis for other stand-

ards, most notably Web Ontology Language subsubsection 2.3.1.3. It

should be noted that while it is quite possible to use RDF triples out

of an ontology driven environment, RDF alone does not provide suf-

ficient contextual information to enable reasoning operations to take

place.

RDF can be serialised to a number of formats, for persistence on

disk and for transfer. Some formats make use of XML, as defined

in subsubsection 2.3.1.1, others are designed primarily with human

readability in mind. The example in Listing 2.1 shows turtle, format

designed for serialising RDF in a human readable form.

Listing 2.1: A specific car forming part of a Class 390, represented in turtle

<http://purl.org/rail/resource/Class390694Type>

rdf:type owl:Class ;

2.3 standards for data integration 21

dc:description "Intermediate motor: first class open (with

disabled seating)"^^xsd:string ;

rdfs:label "MF"^^xsd:string ;

rdfs:subClassOf rs:Class390 ;

rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:hasValue rs:DisabledToiletFacility ;

owl:onProperty <http://purl.org/ub/upper/capability> ;

] ;

rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:hasValue rs:FirstClassFacility ;

owl:onProperty <http://purl.org/ub/upper/capability> ;

] ;

rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:hasValue "J"^^xsd:string ;

owl:onProperty rs:vehicleLetter ;

] ;

.

2.3.1.3 Web Ontology Language

OWL or Web Ontology Language has become the standard for on-

tologies which are to be shared online. OWL is a recommendation

from the W3C, the de facto standards body for web standards. Other

domain specific languages have been developed in the past, some-

times with greater expressivity than OWL, however these have not

seen wide adoption. The OWL 2 was released in 2012.

The OWL guidance document by Parsia et al. (2012b) explores the

comparison between XML and OWL, specifically it poses the ques-

tion ‘What does this buy me that XML and XML Schema dont́?’ and

suggests firstly that OWL (and this point applies equally to ontologies

2.3 standards for data integration 22

in general) provides a form of knowledge representation, not just a

schema. From a schema you know how to respond to an expected

message, but nothing else is possible. Secondly the same document

also states that once a reasoner has been constructed it can be applied

to many domain ontologies, thus promoting reuse.

The specification for OWL 2 may be found in Motik et al., 2012

and a guide in Parsia et al. (2012a). OWL 2 became available during

the development of the Rail Core Ontologies (RaCoOn, described in

subsubsection 2.7.2.1) and has the following “Profiles” available, the

details of which are considered by Parsia et al. (2012a):

• OWL 2 Full Consistency checking and entailment checking are

un-decidable at this level, however this offers the maximum pos-

sible expressivity of any profile.

• OWL 2 EL This uses a DL called EL++ - discussed in Baader,

Brandt and Lutz (2005) EL++ is a good compromise of tract-

ability and expressivity in particular because it can be reasoned

over in polynomial time, whilst still capturing the complexity of

large ontologies. This profile was designed with the biomedical

domain in mind, where it is used extensively, since ontologies

in this domain often have complex T-Boxes and very large A-

Boxes;

• OWL 2 QL As stated in (Parsia et al., 2012a) this DL ‘can be real-

ized using standard relational database technology’. The inten-

ded use case of this profile is to build on the years of develop-

ment and optimisation around classic relational databases, by

implementing Ontologies that leverage these systems as their

datastores;

2.3 standards for data integration 23

• OWL 2 RL is more restrictive than the previous two profiles,

aimed at working with RDF data at scale, giving fast reasoning

over large datasets;

• OWL DL “Direct Semantics” is the subset of OWL 2 which is

required to implement SROIQ. This is larger than the EL, QL,

and RL profiles listed above, but is still only a subset of OWL 2

Full. Ontologies complying with the DL sub-language of OWL

(as opposed to OWL 2) are automatically valid OWL 2 DL onto-

logies, which is useful for backward compatibility.

In Listing 2.1 it is possible to observe that certain of the proper-

ties used are defined by OWL, not RDF, for example owl:onProperty

which restricts the value of properties.

2.3.1.4 SPARQL

SPARQL, a recursive acronym meaning “SPARQL Protocol and RDF

Query Language”, is a language used to query ontology data-stores.

It can perform ‘Create, Read, Update and Delete’ or CRUD opera-

tions, an overview is provided by the SPARQL Working Group (2013).

Syntactically and functionally SPARQL bears comparison to SQL, the

Structured Query Language used with relational databases. Both fa-

cilitate CRUD operations including very complex criteria for selec-

tion, however SPARQL differs in that the data to be queried will al-

ways be RDF triples. An example is provided in Listing 2.2.

Listing 2.2: SPARQL to select all signals from a datastore. Note that this

query would potentially return a very large number of results.

SELECT DISTINCT *

WHERE {

?Signal a <http://purl.org/rail/core/Signal> .

}

2.4 software tools 24

2.3.1.5 GEO SPARQL

Geo-SPARQL is an extension of SPARQL, as discussed in subsubsec-

tion 2.3.1.4 for handling geographic data. It is defined by the Open

Geospatial Consortium4 in Perry and Herring (2012). This makes it

possible to ascertain if a given point is within an area, if two areas in-

tersect or to find the distance between two points, for example. It can

use a number of different coordinate systems and convert between

them. It is used, in conjunction with SPARQL, to write more complex

queries which can take into account an item’s location.

2.4 software tools

The commercial market for ontology related software has grown sig-

nificantly in recent years and there is now a selection of tools avail-

able for many different ontology operations. Ontology editing tools,

reasoners and triple stores are all competitive market places, with

both commercial and open source products available in all spheres.

Another area in which a range of tools is available is that of moving

from relational database to ontology and linked data. If the database

schema is taken as the T-Box and the row data the A-Box, then it

is possible to design an automated tool to do exactly this and make

the data available as an ontology. A method for recording the map-

pings of relational databases to ontologies is discussed by Dimou et

al. (2014), and a survey of the available tools for automating the pro-

cess is available in: May, 2017. As discussed throughout the literature,

a fully automated approach often produces a slightly idiosyncratic T-

Box and better results may be achieved by running a first automated

pass then a human intervention to improve the model.

4 The definition is available from http://www.opengis.net/doc/IS/geosparql/1.0

http://www.opengis.net/doc/IS/geosparql/1.0

2.4 software tools 25

Many software tools were required for project. Some such as the

integrated development environment, were selected purely on the

grounds of experience; familiarity with a tool is very valuable on its

own, thus visual studio5 and C# were used for the majority of the

software development. Another tool required was an ontology ed-

itor, for making additions and alterations to the rail core ontologies.

Many such tools exist and Sridaran, Doshi and Kumar Suman (2013)

provides a review of the most popular. Top Braid composer Maes-

tro Edition 6 was selected for this project owing to the comparative

speed with which it was possible to add large numbers of individuals

alongside the useful visualisation functionality.

In order as to store data in a linked format it is necessary to use a

triple store. A triple store is a data store which holds information as

triples, as discussed in subsubsection 2.2.2.1. All common triple stores

provide basic CRUD functionality, however they can be differentiated

on a number of grounds:

• Cost and License. Some are open source, others offer free trials

or reduced academic licenses. Others are commercial products,

commonly having significant licensing costs;

• Performance. How rapidly operations can be performed on

given hardware. This includes not just CRUD operations but

also reasoning over the ontology;

• Security. Many triple stores offer some form of access control,

with varying levels of granularity. Some triple stores support

access control per graph, some allow for multiple datastores to

be hosted by the same server with different permissions and ac-

cess control lists. Triple stores can also have groups and roles,

5 details of this product and the various editions available are available from https:
//www.visualstudio.com/

6 Available from https://www.topquadrant.com/tools/
modeling-topbraid-composer-standard-edition/

https://www.visualstudio.com/
https://www.visualstudio.com/
https://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/
https://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/

2.4 software tools 26

similar to traditional relational databases, to allow bulk man-

agement of user access;

• Extent of available support. Triple stores range from abandoned

academic projects to commercial offerings with support con-

tracts;

• Compatibility. This consideration is key when the other techno-

logies in the system have already been selected.

• Extra features. Many triple stores offer features beyond CRUD,

not all of which are relevant to all implementations;

The market for triple stores is evolving rapidity at present and a

number of new products are emerging, however, due to the existence

of previous work on which this thesis was based, Stardog7 was selec-

ted. This was then assessed on the criteria above:

cost and license A ‘community edition’ is available for free. Cer-

tain projects required features not available in that edition, how-

ever and for that an arrangement was made with Clarke & Per-

sia.

performance No benchmarking was undertaken by this project;

security Stardog offers per graph security. Each database can con-

tain many graphs, if the user desires.

support Extensive documentation;

compatibility Interfaces exist to use this triple store from both

JAVA and C#. The triple store itself can run operating sys-

tems for which a Java virtual machine is available. Additionally

scripts had been written to insert data into that triple store.

7 Made by Clarke & Persia, download and further details available from: http://www.
stardog.com/

http://www.stardog.com/
http://www.stardog.com/

2.5 benefits of ontology for data integration 27

extra features This has evolved significantly over the duration

of the project, however most useful amongst the non-standard

features was the web interface for administration.

2.5 benefits of ontology for data integration

The available literature suggests several related benefits from using

ontologies for data integration within the rail domain. In the ‘Cap-

ability Delivery Plan’ the Rail Delivery Group (2017) consider data

integration with a focus on cost reduction and use of data as an ena-

bler of other technologies. Tutcher et al. (2013) discusses this with an

emphasis on remote condition monitoring. Another commonly cited

beneficiary of ontology enabled data integration is passenger inform-

ation as reported in Verstichel et al. (2014). This work presents the

TraPIST project, which implements a framework for data integration

using ontologies and creates a real time passenger information ap-

plication as a demonstration.

The advantages to the rail domain of using ontology are discussed

in Morris, Easton and Roberts (2015) based on discussions with the

UK infrastructure manager, Network Rail, as well the study reported

in: ‘Factor 20 – reducing CO 2 emissions from inland transport by

a major modal shift to rail’ by Roberts et al. (2011). The use cases

examined in that study were:

customer information Many studies have found benefits to

customer information from improved data integration using

ontologies. The objective of bringing together multiple data

sources is considered by Verstichel et al. (2014), with the aim

of going beyond simply informing the customer of the time

table and when a particular train is expected, to outlining pos-

sible connections and routes through the station in light of real

2.5 benefits of ontology for data integration 28

time information. This work also took into account the differing

levels of mobility different passengers have, taking into account

disabilities, luggage and other similar constraints.

predictive maintenance This is an area in which ontology acts

as an enabler, making other technologies possible. Many previ-

ous studies have addressed the area of predictive maintenance,

but it is only possible when data is available, as discussed by

Umiliacchi et al. (2011). The project reported in Tutcher (2015b)

also addressed this issue and produced a demonstrator focused

on points machine (switch motor) condition monitoring.

train identification The linking of track-side information with

running services is discussed in (Morris, Easton and Roberts,

2015). Condition monitoring of in-service vehicles from the

track-side currently presents challenges linking the vehicle de-

tected to a physical unit.

maintenance timing and forward planning Two scenarios

put forward by the UK infrastructure manager, Network Rail,

and reported by Morris, Easton and Roberts (2015) concerned

‘forward looking question answering’. An interface should be

provided to allow the asking of guided (not truly free text) ques-

tions such as: “Given the data we have when would be the best

time to do maintenance?” or “Is it better to replace a given asset,

such as a bridge, like for like or with a less expensive substitute,

such as a bridge rated for a lower weight?”

Several European research projects, most recently IT2Rail as repor-

ted by Gogos and Letellier (2016), discuss the advantages of using

ontology for data integration in the rail domain. As with previous

studies, such as InteGRail, reported by Köpf (2010), Gogos and Letel-

lier (2016) find ontology brings benefits to the industry as a whole,

2.5 benefits of ontology for data integration 29

although the benefits do not necessarily accrue with the same party

as the costs. A key advantage of using ontology for data integration,

as espoused in (Gogos and Letellier, 2016) and (Morris, Easton and

Roberts, 2015), is that of decentralising data entry; because the on-

tology model can be extended by anyone, there is no limit on who

can make data available via local extension, as such suppliers can

provide data relating to their own products, reducing the data entry

burden on any stakeholder. Furthermore the architecture of semantic

web means that there is no need for a central repository of all rail

related data, though security restrictions may be placed on who can

access certain data when that is necessary.

Several EU funded projects, building on the outputs of IT2Rail,

are in progress at the time of writing. The ‘ATTRACkTIVE’ project

aims to develop a ‘one stop shop’ type phone application handling

everything from ticket purchasing to routing around disruptions. ‘Co-

Active’ has similar goals, but focuses primarily on the distribution of

revenue from a single journey across multiple providers. Both these

projects aim to work across multiple modes. In general ontology can

bring a range of benefits to the customer information domain, in-

tegrating data from various sources to provide more comprehensive

information.

Ontology is also being explored commercially, ERTMS Solutions

(2017) of Brussels state that they have obtained a contract for the use

of their ontology based data integration tools on the Belgium rail

network, working for SNCB, the Belgium national rail company.

2.5.1 Multi-modal transport

Multi-modal transport is a domain in which, almost by definition,

there is a need for data interchange; Journeys tend to be multi-modal,

2.5 benefits of ontology for data integration 30

and thus it is beneficial for journey planning applications to include

data on all modes. The multimodal journey problem was first con-

sidered in the ArkTRANS project, as reported in (Westerheim, 2003)

and ArkTRANS has become the basis of a number of projects con-

cerned with the integration of data for freight. Examples include:

Gönczy et al. (2012) , (Rødseth, 2011) and (Paganelli et al., 2009). Mul-

timodal in the case of freight often includes an element of the journey

made by sea freight which is considered by Rødseth (2011) or by ferry.

Work reported in Verstichel et al. (2014) includes a customer as-

sistance application, which aimed to give personalised customer in-

formation for users making multi-modal journeys. Using data from

multiple sources, both timetable and actual running, along with GPS

position and personalisation setting, such as the user mobility the

application will attempt to suggest the best modes of transport to

complete a journey, according to the users selected metric (cost or

time).

Morris, Easton and Roberts (2016) discusses Google Transit Feed

Specification, here on referred to as GTFS. GTFS, initially defined by

Google, is a format for the interchange of public transportation sched-

ules. This is primarily used for journey planning, both by Google

maps and other third party applications, both open and closed source.

GTFS is discussed by Santos and Moreira (2014) and its success

should be noted; much public transport information is now available

to Google maps. Possible improvements to the protocol are discussed

in Santos and Moreira (2014) and further improvements have been

proposed by Google, in particular to allow real time information to

be added to the map, regarding departures and service status. The ori-

ginal GTFS is defined at: https://developers.Google.com/transit/.

It can be seen that GTFS is a fairly simple relational format. It is

heavily used, as described by Colpaert et al. (2015):

https://developers.Google.com/transit/

2.6 data integration in other industries 31

The General Transit Feed Specification (GTFS) specifies the

headers of 13 types of CSV [Comma Separated Variable] files,

describing the schedules using a set of rules. In recent years,

GTFS gained a lot of popularity, thanks to its simplicity and its

adoption in popular route planning systems such as Open Trip

Planner, Navita.io, Google Maps or RRRR Rapid Real-time

Routing.

The work in Colpaert et al. (2015) uses GTFS and linked data frag-

ments to perform multi-modal route planning. It should be noted that

GTFS was originally “Google Transit Feed Specification” however it

became an open source project, no longer funded by Google. GTFS

real-time can be used to transmit perturbation information, allowing

for journey planning software to update plans as services alter.

2.6 data integration in other industries

Many other industries are far ahead of the rail industry in terms of

take up of ontology. Morris, Easton and Roberts (2014) discuss, and

draw lessons pertinent to the rail domain from applications of on-

tology in, the biomedical research, media, petrochemical, and power

distribution domains. This is further discussed by Horrocks (2007),

who mentions applications in the following industries: eScience, geo-

graphy, engineering, medicine, biology and defence.

2.6.1 Industries implementing Ontology

2.6.1.1 Biomedical Research and Bioinformatics

The Biomedical domain remains at the forefront of ontology develop-

ment and uptake.

2.6 data integration in other industries 32

As early as 2004 the Gene Ontology (GO) was available for use, and

was described as by Smith and Kumar (2004) as comprising: ‘1395

component terms, 7291 function terms, and 8479 process terms.’ The

purpose of this ontology is described as:

To allow researchers annotating genes and gene products to

locate where the features and attributes they are addressing in

their work might lie (their position in logical space) in relation

to other, more familiar features and attributes and thus either

to pick out corresponding terms already existing within GO’s

controlled vocabulary or to localize corresponding gaps in the

existing hierarchies and so recommend new terms which need

to be included.

In 2006 Bodenreider and Stevens (2006) summarised the role of on-

tologies within bioinformatics as having “moved from a niche activ-

ity to one that is, in all respects, a mainstream activity”. That study

includes a time line, until 2006 (when it was published) of use of

ontology within bioinformatics, which shows a move from ontolo-

gies designed by computer scientists to ontologies produced within

the bioinformatics community. Focusing specifically on the Gene On-

tology, Bodenreider and Stevens (2006) state that it grew from 3500

terms in 1998 to 20,000 terms in 2006. It is worth noting that both

Bodenreider and Stevens (2006) and Groß, Pruski and Rahm (2016)

as with other studies in the domain of bioinformatics are careful to

state that they are defining ontology quite broadly; there is room for

argument, though it is beyond the scope of this thesis, as to whether

some of the ontologies in this domain might more properly be termed

“controlled vocabularies”.

A recent study, by Groß, Pruski and Rahm (2016), focuses on map-

ping the various related ontologies in the bioinformatics domain to-

gether and studying how they change. It finds 500 different ontolo-

2.6 data integration in other industries 33

gies to be in use at this time in bioinformatics. These largely cover

different sub-domains, though there is some overlap. This high up-

take of ontology has been encouraged by requirements, imposed by

some journals in this domain, that results be published annotated

with an approved ontology. This is intended to make data available

for automated processing and unambiguously.

SNOMED CT is another ontology in the Biomedical domain with

a long history, created as merger of two standard vocabularies, both

of which pre-date storing ontologies electronically. As Chute (2000)

states in his comprehensive review of the history of SNOMED CT,

the precursor to SNOMED CT was ‘Conceived during a symposium

at the New York Academy of Medicine in 1929’, well before ontolo-

gies were considered for data representation. The same author goes

on to discuss the breakthrough represented at the time by accurately

coding clinical conditions so as to remove ambiguity. This evolved

through time first as taxonomy, storing electronically both very de-

tailed and high level terms, along with how such terms can be re-

lated, to its present light weight and well regarded ontology. Based

on a light weight decision logic, EL++, this ontology consistently

reviewed by academics and whilst scope for improvements is often

found its utility is unquestioned.

Jovanović and Bagheri (2017), whilst primarily focused on the se-

mantic annotated of existing textual biomedical papers, also contains

a review of the current (as of 2017) state of ontology within the bio-

medical domain.

2.6.1.2 Media

The British Broadcasting Corporation, here on referred to as the BBC

make extensive use of ontology, both internally and externally8. The

8 A promotional video for the BBC’s work in this area may be found
at: http://www.bbc.co.uk/academy/technology/software-engineering/
semantic-web/article/art20130724121658626

http://www.bbc.co.uk/academy/technology/software-engineering/semantic-web/article/art20130724121658626
http://www.bbc.co.uk/academy/technology/software-engineering/semantic-web/article/art20130724121658626

2.6 data integration in other industries 34

BBC adopted linked data technology at a comparatively early stage;

Kobilarov et al. (2009) discusses the BBCs aspirations and future

plans in this area along with summarising progress to date and

says: “we demonstrated how these links between data items can

benefit our user facing web sites, through topic pages and naviga-

tion badges.”. The BBC makes use of several external data-stores,

most notable amongst them DBPedia - http://wiki.dbpedia.org/,

a linked data companion to Wikipedia. This approach, of reusing

available data sources rather than recreating them is recommended

throughout the literature. At the time of writing DBPedia contained

entries for 5.2 Million entities 9, encoded using nine and a half bil-

lion RDF triples. DBPedia has similar coverage to Wikipedia, that

is to say, some information on almost all topics, but to a limited

depth. The rail-domain is covered, for example a class 700 electric

multiple unit (as used in the Thames Link program) is described at

http://dbpedia.org/resource/British_Rail_Class_700.

As discussed by Mikroyannidi, Liu and Lee (2016) the BBC have

continued to make progress in this area, now covering the education

domain.

2.6.1.3 Process and petrochemical plant

ISO15926 was published in 2004, having originally been a standard

for exchanging technical drawings, used in a range of manufacturing

sectors, including defence. A history of ISO15962 is available from:

(POSC Caesar Association, 2011). ISO15926 has been used extensively

by oil companies working on the “Norwegian Continental Shelf”. As

discussed by Leal (2005) key components of the standard are a ref-

erence data model and an information model. The concepts used in

ISO15926, and in particular its approach to modelling changes over

time, were important in informing the design of the rail core onto-

9 http://wiki.dbpedia.org/dbpedia-version-2016-04

http://wiki.dbpedia.org/
http://dbpedia.org/resource/British_Rail_Class_700
http://wiki.dbpedia.org/dbpedia-version-2016-04

2.6 data integration in other industries 35

logies, as discussed by Tutcher (2015a), along with a more detailed

break done of the standards components.

2.6.1.4 Power Distribution

The common information model, as used in the power distribution

industry, is extended by Hargreaves et al. (2013) to include use of

ontology for information exchange. This common information model

is also used as an enabler of “smart grids” as discussed by Frémont

et al. (2008).

2.6.2 Other Domains

2.6.2.1 Manufacturing

Mueller and Peschke (2015) propose use of ontology as a means

to reduce energy consumption in the manufacturing sector. Many

factories use equipment from a range of suppliers and integrating

data about the equipment can produce a number of benefits. This

work focuses on allowing temporarily unused equipment to enter a

low power or “standby” state. Different equipment has different pre-

requisites for entering a stand-by state and requires different control

signals to do so. A generic manufacturing ontology was also pro-

duced by Mazzola et al. (2016) called ‘CDM-Core’ developed within

the European research project, CREMA.

2.6.2.2 Geospatial

The geospatial domain is another strong candidate for data integra-

tion. There are many heterogeneous data sources and a large range

of consumers. Example sources cited by Zhang et al. (2013) are

‘Wikimapia’ and Open Street Map, which provides “elevation and

address information, such as state and county name, in addition

2.6 data integration in other industries 36

to the building names, longitudes, latitudes and polygons” where

as “Wikimapia provides names, latitudes, longitudes and polygon

outlines for building entities” The same source goes on to note that

where details are provided for the same field they do not always have

the same value.

In Zhang et al. (2013) a technique is presented, using a combin-

ation of spatial and semantic data integration to combine multiple

data sources and present them to a user. This domain is of particular

relevance because it exhibits strong cross over with the rail domain

since many problems in the rail domain, including those encountered

in this thesis, involve locations. The location both of fixed infrastruc-

ture and of rail vehicles is of particular interest and certainly overlaps

the geospatial domain. An example is given in Janowicz et al. (2012)

of two weather stations which both provide wind direction data, se-

mantic disambiguation of blows from and blows to (given as numbers

between 0-360) would be useful. Janowicz et al. (2012) Also states that

there have been a number of useful ontologies developed in that do-

main; both mapping ontologies including those from state mapping

organisations and domain ontologies such as SWEET, for earth and

environmental science. The sensor data integration that is done in

this domain is equally relevant to the Rail Domain.

2.6.2.3 Finance

The finance domain has also used ontology for data integration, how-

ever, whilst the ‘Financial Industry Business Ontology’ allows for in-

terchange of information between companies. In Kim et al. (2004) this

is discussed in a Korean context.

2.7 progress towards improved data integration in the rail domain 37

2.6.3 Virtual Personal Assistants

Siri, the ubiquitous virtual personal assistant found on most Apple

branded devices, was developed by Tom Gruber (whose definition

of ontology is quoted in the introduction). This tool uses ontology

not just to look up the answers to questions it is asked but ascertain

context; it using ontology to store information. This is presented by

Gruber (2009b).

2.7 progress towards improved data integration in the

rail domain

2.7.1 Non-ontology data integration

Data integration has been required within the rail domain since be-

fore the data was held electronically. Standards were developed for

data interchange on an as required basis, whenever two or more

systems needed to communicate. Many of these have evolved over

time and have value in different domains. The key weakness with all

such approaches is their inflexibility; when the information to be ex-

changed changes so must the standard, such interfaces are however

generally computationally inexpensive to implement.

Without some standardisation cross border rail travel would be im-

possible, first vehicles must be compatible in all regards with the

infrastructure up which they run, from the gauge of the wheels,

through to the in-cab signalling systems. Secondly timetabling in-

formation, trains movements, and signalling data must all be ex-

changed so that the train arrives where it is expected and fits in with

local traffic. Lastly financial data needs to be exchanged; usage fees

2.7 progress towards improved data integration in the rail domain 38

paid for lines travelled upon and electricity used, passenger fares

split between operators.

An assessment of the common data interchange standards cur-

rently in use may be found in Chapter 3 of Tutcher (2015a), which

discusses their application within the following systems and inter-

faces for GB rail:

darwin is the current UK solution for providing real time passenger

information, bringing together train describer information with

information from various operating company specific systems

which offer better precision. This is then made available both to

station displays and to external users via web-services.

orbis Offering Rail Better Information Services (ORBIS) is described

in Tutcher (2015a) as ‘a series of projects centred around provid-

ing staff with better access to existing asset information data’,

before going on to conclude:

[ORBIS] coordinate[s] with efforts across the European

Union to develop standardised railway infrastructure mod-

els. Whilst the data acquisition and design of many of

these systems is already under-way, the company recog-

nises that semantic data models provide a longer term

solution to ensuring that information is available across

the entire organisation.

Amongst the outcomes of this project are LADS, as discussed in

section 2.1, and a ‘Close Call’ reporting application to improve

safety, as discussed by Network Rail Infrastructure Ltd (ORBIS

— Network Rail ’ s Offering Rail Better Information Services).

railml development of this standard commenced in 2001. Some of

the development of the RaCoOn ontologies was based upon

terms extracted from this XML standard for data interchange

2.7 progress towards improved data integration in the rail domain 39

within the rail domain. In particular the modular structure, with

time tabling, rolling stock, and infrastructure modules is bor-

rowed from this as discussed in Tutcher (2015a). Further more

as stated in Tutcher (2015a) railML is used as “a data source for

railway vocabulary and concepts”, in keeping with the principle

of re-use, not redevelopment. RailML uses XML to define its

schema. As of version three railML now uses RailTopoModel10,

codified by the Internal Union of Railways11 as International

Railway Standard(IRS) 30100, as its data model (for infrastruc-

ture data). This data-model is itself a graph, and would very

naturally lend it self to implementation as an ontology. This is

further discussed by Nash et al. (2010) and RailML.org, 2018.
An example definition of a rail vehicle in railML is included in List-

ing 2.3. Note that a significant amount of the information present in

turtle is inferred from the schema.

Listing 2.3: A German rail locomotive, as defined in railML

<vehicle id=’veh_DB.298’ name=’DB.298’ axleSequence=’B&apos

;B' dh’ numberDrivenAxles=’4’ length=’13.940’

speed=’80’ bruttoWeight=’68.000’ nettoAdhesionWeight

=’68.000’>

<classification>

<manufacturer manufacturerName=’LEW’ manufacturerType

=’298’/>

<operator operatorName=’DB’ operatorClass=’298’/>

</classification>

</vehicle>

technical specifications for interoperability Telematic

Application for Passengers and Freight service, commonly re-

ferred to a TAP (Passengers) and TAF (Freight). Technical stand-

10 More information available from http://www.railtopomodel.org/index.php/en/
11 Known as the UIC, further information is available at: http://uic.org

http://www.railtopomodel.org/index.php/en/
http://uic.org

2.7 progress towards improved data integration in the rail domain 40

ards for interoperability are mandated by the European Union

in directive 2008/57/EC - Council of the European Union (2008).

These standards set out requirements as to the type of inform-

ation that must be available to passengers and freight operat-

ors, as well as providing a detailed technical standard setting

out how this data shall be exchanged. This standard, as with

railML, makes heavy use of XML for data interchange.

Another area in which integration is necessary is that of signalling

and train control. It is desirable that, when a train crosses a national

border it is not necessary to change the locomotive for one compat-

ible with the new nations signalling systems. Similarly journey times

can be reduced if it is not necessary to change driver, for one famil-

iar with local signalling conventions, every time a border is crossed.

The European Railway Traffic Management System, which is a project

overseen by the European Commission, aims to make this possible for

member states.

2.7.1.1 European Train Control System

The European Train Control System, commonly referred to as ETCS,

is intended as replacement for traditional rail signalling systems

and forms a part of the The European Railway Traffic Management

System (ERTMS). This system provides a standard in-cab element,

known as the Driver Machine Interface (DMI) which provides the

driver with a range of crucial information, such as whether it is safe

to proceed and the maximum safe speed.

ETCS can be implemented to different levels, with higher levels

allowing for a greater density of traffic on the rail network, but re-

quiring of greater investment to implement. The lowest levels ETCS

works with pre-existing national signalling systems to provide uni-

fied driver information, communicating with line-side equipment via

2.7 progress towards improved data integration in the rail domain 41

balises12. At higher levels the communication uses a radio link. When

implemented fully and to its highest level, three, it uses accurate

knowledge of the location of each train on the network to run trains

closer together than conventional signalling systems allow for. The

full details of this system and its advantages are beyond the scope of

this thesis but are summarised by European Commission (2011).

2.7.2 Ontology based integration within the rail domain

Previous work has been done constructing ontological models of the

rail domain.

The REWERSE project reported in Lorenz (2005), part of the Sixth

Framework Program, produced an ontology which covered the trans-

port domain. The purpose of this project was primarily to enable

the interchange of geographic information, thus transport modes are

covered in some depth, including interchanges between modes and

routes taken. Further to this the REWERSE ontology allows for the

modelling of timetables for all modes of transport, along with restric-

tions such as speed, class of vehicle etc. Whilst the goal of this project

was not to provide an ontology suitable for detailed evaluation of

vehicles or fixed assets within the rail domain it could be applied to

the integration of multi-modal transport.

The InteGRail project reported in Köpf (2010) was a European pro-

ject also funded as part of the Sixth Framework Programme. This

aimed to produce both an architecture and an ontology for data in-

tegration, to act as a standard for data interchange within Europe.

This project produced a ‘network statement checker’, this tool al-

lowed users to check if a given train consist was compatible with a

12 Electronic beacons, situated in the centre of the traffic, low enough in profile that
a train does not hit them. Equipment on the train communicates with them to ex-
change information, often signalling related

2.7 progress towards improved data integration in the rail domain 42

chosen route, by means of demonstrating the capabilities of ontology

for data integration. The work done as part of InteGRail is discussed

further in Verstichel, Ongenae and Loeve (2011b), as is the importance

of adding semantics to data for improved integration.

The InteGRail project made it possible to integrate data originating

not only from different manufacturers but also different countries.

There are significant challenges to running trains across national bor-

ders, where the information systems relating to the rail network are

implemented nationally. At the simplest level it is easy to ascertain

whether a track is of the same width, or gauge, as that required by

the proposed train consist. Other details are more challenging; the

required characteristics of the electrical supply in terms of voltage,

frequency, and current must be correct, as must the means of “pick-

ing up” the power be they overhead line or third rail. More complex

issues are presented by the loading gauge (other physical aspects of

the vehicles, which determine whether they can clear corners, bridges,

platforms etc.) and signalling or train control systems used, which

as more complex systems are developed, become more problematic,

though standardisations efforts in this domain are well under way.

As discussed in Verstichel, Ongenae and Loeve (2011b) ontology can

represent relationships within the train control domain, for example

one train control or signalling system being a subset of or synonyms

for another. These relationships would at best need to be specifically

planned for if using a pre-defined schema, such as is found in a rela-

tional database.

IT2Rail is a lighthouse project of (that is forerunner to) the European

Union’s Shift2Rail project, which has produced several deliverables

and is focused on semantic data integration. As reported by Gogos

and Letellier (2016) amongst this project’s aims are:

2.7 progress towards improved data integration in the rail domain 43

• The creation of a shared domain ontology, i.e. of an expli-

cit, formal, shareable, machine- readable and computable

description of the computational model associated with

data descriptions and exchanges in order to allow a higher

degree of automation of distributed processes across mul-

tiple data formats and protocols, spanning unspecified act-

ors.

• Allow for multiple implementation and deployment op-

tions of the logical functions and interfaces.

In this way different vendors can produce different, comparable

and compatible, parts of a larger system.

Whilst some software has been produced as part of this project, in

the form of a demonstrator, IPR constraints mean that it will not be

available to the public, nor the industry outside of the project.

Other, more commercial work includes, the TraPIST project most

recently reported in Bhatti et al. (2016) and focused primarily on

customer information. Also on going is work created in answer to

RRUKA’s (The Rail Research UK association, a collaboration between

network rail and RSSB) ‘Data to Improve Customer Experience com-

petition’ which focuses primarily on customer information.

2.7.2.1 Rail Core Ontologies

The ontologies used in this thesis are built on those developed at this

centre and reported in Tutcher (2015a), though many of the conclu-

sions could apply to any model of the rail domain. That study was

centred around the principles of designing ontologies for the rail do-

main and the result was the Rail Core Ontologies, referred to by the

author as RaCoOn, a group of ontologies for representing the rail do-

main in depth and a set of design principles for extending them as

necessary. This resulted in a group of ontologies arranged as in Fig-

2.7 progress towards improved data integration in the rail domain 44

ure 2.2. Note the hierarchical arrangement of the layers. The highest

layer, the upper ontologies, contains concepts which apply outside

of the rail domain. The applicably of upper level ontologies to the

rail domain was considered as part of the same study, in particu-

lar section 5.3, where a choice is made not to directly use any pre-

existing upper level ontology, but to design a lighter weight upper

layer, which can, if needed, be mapped to BFO to provide common

high level concepts.

Highest Level
Cross Domain 4D 3D ConstraintsExternal

Ontologies

Rail Core Constraints4D 3D Core

Task Ontologies

Application Ontologies COMPASS AMaaS

TT RS IS
Time Tabling InfrastructureRolling Stock

Figure 2.2: Structure of the RaCoOn Ontologies. Note the constraints onto-
logies present on the upper two levels

When RaCoOn was designed it was decided that more than one

level of expressivity would be required; as stated by Tutcher (2015a)

“each semantic module is split into two logical modules: a ‘core’ mod-

ule containing terminology, T-box relations, and other minimal se-

mantics, and a ‘constraints’ module, containing restrictions on classes

and more highly expressive constructs.”. As such the core modules

comply with the OWL-RL profile and the constraints, if used, can be

implemented in OWL DL, which is more complete and hence more

computationally expensive.

2.8 conclusions 45

Note that restrictions, which require a higher level of expressivity

are placed in separate ontologies which for practical purposes are con-

tained in separate files. These are labelled ‘constraints’ in Figure 2.2

This allows implementers to use only as much expressivity as their

use case requires. This ontology was successfully employed in a pro-

ject conducted with a commercial partner, and reported in Tutcher

(2015b) were data from points machine and wheel impact load detect-

ors was integrated with network layout data and a graphical interface

created for it. The industrial partners in this project were then able to

extend this to include circuit breaker condition monitoring, with out

any further academic input. This was possible because the graphical

display element had been designed to display anything that the on-

tology inferred to be in “faulty” condition, all that needed doing was

declaring a new type of asset (circuit breaker) and a new fault condi-

tion (based on the time to operate). When that condition was met it

was displayed in the interface with no code changes being required

to the interface.

2.8 conclusions

This literature review has found that work is being done to remedy

the poor state of data integration within the rail domain in the UK.

Data integration has been achieved in the past without use of onto-

logy, however, significantly greater progress is possible. Much work

has been done on the development of data models for the European

rail domain by a range of projects, the remaining issues are now

centred around the take up and use of ontology in the rail domain.

Past work has shown there to be value, to many stake holders, from

improved systems integration and further more it has been shown

that ontology is a good means of achieving that systems integration.

2.8 conclusions 46

Technology, tools and data models to represent the domain now ex-

ist to make implementation of ontology for data integration possible

in the rail domain, as shown by the success with which it has been

implemented in other domains, most notably biomedical science.

3
P R O B L E M S TAT E M E N T

Although numerous governmental and industry reports1 have es-

poused improved data integration as a driver of reduced costs for

many rail industry stakeholders and an improved travel experience

for passengers, efforts towards this goal have been slow to implement.

Costs would be reduced for both infrastructure and operating com-

panies by enabling the implementation of other technologies, such

as predictive maintenance which reduces their direct operating costs,

along with a reduction of the cost of alterations or extensions to

information systems. The benefits of predictive maintenance as dis-

cussed by Bergquist and Söderholm (2015) and Rail Delivery Group

(2017), include reduced costs by reducing unnecessary replacement

of working equipment as part of planned maintenance and expensive

failures caused by inadequate preventative maintenance.

As discussed in a study commissioned by the American National

Institute of Standards and Technology and carried out by (Gallaher

et al., 2004) the capital facilities industry (Large scale construction) in

the USA projects that it could save $15.8 billion were it to adopt on-

tology for data integration. Other domains have more mature imple-

mentations of ontology for data integration, most notably biomedical

research where such technology is not a matter of research, but every-

day use. In the consumer domain, the popular ‘Siri’ virtual personal

assistant makes heavy use of ontology for knowledge representation

and question answering.

1 (Rail Delivery Group, 2017),(Department for Transport, 2011),(Technical Strategy
Leadership Group, 2012)

47

problem statement 48

Previous studies such as (Verstichel, Ongenae and Loeve, 2011a),

(Tutcher et al., 2013), and (Morris, Easton and Roberts, 2015) have

shown ontology to be a useful tool for data integration in many do-

mains, including rail, and it is this integration which makes other

technologies possible. Once the range of heterogeneous datasources

that many industries have, or have had, are modelled as an ontology

the data contained there in can be combined and is made accessible

throughout the domain. Additional benefits are possible if the rules

describing how decisions are made in the domain are also encoded

in the ontology, enabling better decision making and more oversight

from domain experts. Ontologies already exist for the rail domain,

many of which were created by the same studies as found that there

would be a benefit from using ontology in the domain. The work

reported by Tutcher (2015a), included the design of a linked set of

ontologies for the rail domain. Previously ontologies were also built

as part of the InteGrail project, reported by Köpf (2010), and more

recently as part of the Trapist project reported by Bhatti et al. (2016).

Additionally there has been work done in the commercial sector; not-

ably ERTMS solutions of Brussels2 and Televic Rail of Izegem3 have

done work in this area.

It can be seen that the market is starting to respond to the in-

dustry need, however there is still no significant uptake of ontologies

or linked data in the rail domain. There are demonstrators, such as

those reported in: (Bhatti et al., 2016), (Tutcher et al., 2013) or earlier

in (Köpf, 2010), but, in contrast to other sectors, commercial uptake

remains limited. The information environment in the rail domain is

very diverse and this may have impeded uptake of ontologies, as

such the extent to which this is a barrier to uptake requires investig-

ation. In particular whilst many studies have produced data models

2 https://www.ertmssolutions.com/
3 http://www.televic-rail.com/en/

https://www.ertmssolutions.com/
http://www.televic-rail.com/en/

problem statement 49

or demonstrators there are no national scale implementations, thus

investigating whether this is possible at reasonable cost would be be-

neficial.

The transition from the current situation, that of many incompat-

ible heterogeneous datasources to a system where queries can seam-

lessly retrieve data from multiple sources will be a complex process. It

has been established by previous studies that ontology will make that

possible, but the transition has not been studied in depth. Work has

been done, both academically and commercially, to allow the use of

relational databases with linked data and ontology. Whilst relational

datasources are straight forward to convert completely unstructured

data, such as technical drawings, sensor data streams, or flat text files

will require further investigation. Given that tools exist to make the

transition for relational data sources then it would be useful to ascer-

tain whether it is possible to make similar tools for other data sources.

Once the transition to using ontology and linked data has been

made, or even begun, another challenge must be faced, that of the

skills gap in the software engineering domain centred on ontology

engineering, which presents a barrier to uptake of ontology in all

domains, including rail. In moving from the theoretical phase, tech-

nology readiness level 4 or 5, to implementation there is a need for

both software engineers who can work with ontology datastores and

ontology engineers who can construct domain models. In the long

term this gap can be filled with education, however, given that neither

linked data nor ontology are currently included in the syllabuses of

most university level computer science courses this is not a short term

solution. We should then consider whether tools could be created to

help plug that gap.

If implemented fully, an ontology (or a linked set of ontologies)

would hold all the logic and decision making rules used in any new

software, leaving only interfaces (with humans or external equip-

problem statement 50

ment) to the software developer. When creating a new interface is

required, for example display on a new piece of hardware, or when

a new sensor is attached to the system it would be a simple soft-

ware engineering task. This would be accomplished by providing the

software developer with a webservice to call which would handle

the operation, thus separating the roll of ontology engineer from the

roll of a software developer. By removing the specialist tasks from

more generalist software engineers, the development of new systems,

or modification of old, to incorporate ontologies for data storage is

made possible. This eases data integration and enables all the bene-

fits available to the rail domain discussed in chapter 2.

After ontology has been applied to the rail domain another chal-

lenge to face is that of high velocity and volume data. When deployed

on a national scale some data, such as that from sensors or cameras

simply arrives too fast and in too large of a quantity to express as

triples and store in an ontology. Such data needs to be stored separ-

ately, however more value would be available to the domain were it

stored in the ontology as such, in line with the proposals in (Tutcher,

2015a), a compromise solution is possible whereby the fine grained

data resides in a suitable store and a link, along with a summary

resides in the triple store. The aggregation of these storage media is

a task that will need to be carried out where ever high volume sensor

data is used, which is a common occurrence in the rail-domain, thus

it is reasonable to ask if this could be done once to avoid unnecessary

repetition.

Another problem that will be faced after ontology is adopted is that

of changing interfaces to triple stores and potentially as the market

evolves even changing triple stores. It would be problematic if as a

new version of a triple store was released it broke existing industry

software. Whilst vendors will naturally work together with industry

clients to minimise this it is regrettably the case that interfaces do

problem statement 51

change with time. It is also the case that as the market matures dif-

ferent triple stores may present them selves as the most appropriate

back-end and it would be beneficial to the industry if migration was

possible. It would there for be good to investigate if it is possible to

isolate the rail industry from changes to the triple stores.

The last issue this thesis will seek to investigate is that of inform-

ation security. As shown in the literature review this issue is under

broader consideration in the rail domain, however the question of

how to secure datastores with no inbuilt security remains outstand-

ing and is related to the question of datastore aggregation.

The questions may then be summarised thus:

• Given the diverse information environment within the rail

industry, how can heterogeneous datasources be combined,

where there is value in so doing?

• Given the current shortage of engineers with experience editing

or connecting to ontologies, is it possible to create tools which

improve their uptake and adoption?

• Given that many stakeholders can benefit from combining mul-

tiple data sources, what techniques enable this?

• Can an intermediary layer isolate information systems from

changes to datastore interfaces?

• Given the velocity and volume of data within the rail domain,

can an ontology based architecture be deployed on the scale of

a national rail network?

• How can datastore security be managed within the setting of

an ontology and IT infrastructure?

The remainder of this document is devoted to answering the ques-

tions above.

problem statement 52

Question Investigated In

Given the diverse information environment

within the rail industry, how can heterogeneous

datasources be combined, where there is value in

so doing?

Chapter four

Chapter six

Given the current shortage of engineers with ex-

perience editing or connecting to ontologies, is it

possible to create tools which improve their up-

take and adoption?

Chapter five

Chapter six

Given that many stakeholders can benefit from

combining multiple data sources, what techniques

enable this?

Chapter five

Chapter six

Can an intermediary layer isolate information sys-

tems from changes to datastore interfaces?

Chapter five

Given the velocity and volume of data within the

rail domain, can an ontology based architecture be

deployed on the scale of a national rail network?

Chapter six

How can datastore security be managed within

the setting of an ontology and IT infrastructure?

Chapter five

Chapter six

4
S C H E D U L E P R O C E S S I N G T O O L

4.1 introduction

This chapter describes techniques for working with data not currently

held in a form suitable for integration, but rather held, as much rail

industry data is, in various single purpose formats. Methods for con-

structing tools to make that transition will be discussed and examples

of such tools presented, alongside a discussion of when it is appropri-

ate to build custom tools and when third party tools are appropriate.

While ontology based systems operate on data stored as triples, it

is uncommon for rail industry data to be natively stored in this form.

As such tools must be provided to convert or map this data into triple

based format before it can be used with ontologies.

In the rail industry, as with most industries, much of the data

currently collected and in use resides in large relational databases.

Where this is the case, existing automated tools, or functionality em-

bedded in triple stores, can be used to allow access to the data in a

linked format. Other data sources, however exist in a range of single

purpose formats developed as needed over time. An example of a

typical industry datasource, requiring conversion is timetable inform-

ation. This is required by many different stake holders, thus the bene-

fits of it being available in a linked format will be felt by a large num-

ber of different groups such as customers for journey planning, also

within the rail domain it is needed for timetable planning, train iden-

tification, crew rostering, and maintenance planning amongst other

tasks. The obstacles to this transition, posed by the dated and in-

53

4.2 transition to linked data 54

dustry specific data format as well as the volume of data are rep-

resentative of the challenges that will be faced moving to ontology

based systems.

These tools present answers to the question Given the diverse inform-

ation environment within the rail industry, how can heterogeneous data-

sources be combined, where there is value in so doing?. The contribution

these tools make to answering the question will be assessed in sec-

tion 4.8.

4.2 transition to linked data

The transition from the existing heterogeneous systems to a more in-

tegrated solution has two parts; firstly the domain must be modelled,

then tools must be designed and implemented to convert the existing

data to a format which can be integrated. As discussed in chapter 2

ontology data is considered in two parts: the ‘model’, which is known

as the TBox and contains the schema information and the data itself,

which is known as the ABox.

The modelling problem is being considered by numerous other

studies of which the most pertinent to this work was modelling of

the broader domain as part of the work reported by Tutcher (2015a).

Modelling a domain requires knowledge of both ontology modelled

and the domain in question, as such it can be an obstacle to trans-

ition. This challenge continues to require skilled personnel, however

as more of the domain is modelled less will need modelling when

new data sources are encountered.

4.2 transition to linked data 55

4.2.1 Extending the ontology

In order as to make new datasources available as linked data it is

necessary that all the concepts represented by that datasource also

be held in the ontology providing the model of the domain. Where

the domain ontology lacks concepts which represent the data held, it

is necessary to extend the domain ontology. When this is done, it is

imperative not to recreate URIs for items already in the ontology, as

such the following simple steps are taken:

• Search the Tbox for URI containing the name of the property or

object under consideration;

• Search the Tbox for URIs with labels containing the name of the

property or object under consideration;

• Repeat the above for any common synonyms.

As is commonly stated in the literature, if an object or property (as

appropriate for the concept you wish to model) exists then human

judgement needs to be used to decide whether the item found is:

a URI that should be reused, a super type, or different concept to

that which requires modelling. Since different modelling decisions

are sometimes taken at different times, it is important to check both

properties and classes for any given concept. Where a concept is not

directly related to the domain and may exist in an external ontology

it is considered best practice to reference the external ontology rather

than redefining the concept.

Once data is modelled correctly and a tool is designed to insert the

abox data in an automated fashion the model will serve as a lingua

franca for making the data available to other systems that require it.

Additionally it will be possible to use the data in conjunction with

other data stored in ontology based systems for reasoning and the

4.2 transition to linked data 56

abstraction of business process to rules. For example suppose a train

operating company wishes to insert an extra service, for a special

event at a given time and place, which attracts spectators from many

separate points of origin. By combining timetable data with a static

map of the network it will be possible to work out whether it is pos-

sible to add extra services from various points of origin, given also

pricing information and population density data (already available

in a linked format, via DBPedia1) it would be possible to ascertain

the probable profit of each such service. Note that detailed routing

information (not in the files discussed in this chapter) would also

be necessary in this scenario. Were the ticket barriers also integrated

into such a system it would be possible to sell tickets, at a price de-

termined to make a profit and have them only work on the correct

barriers at the correct stations. All of this is possible with the existing

disparate systems, but many manual integration steps are required.

4.2.2 Tools for processing A-Box data

An automated tool is required to parse the A-box data in the follow-

ing circumstances:

• The data to import has some value;

• The data is not held in a relational format; as such automated

mapping tools can not be employed;

• The data cannot be converted using existing tools, such as Open-

Refine2;

1 Discussed in subsubsection 2.6.1.2
2 OpenRefine, formerly Google refine, is a very powerful open source tool which can

take data in a wide variety of formats, perform simple processing and output it
again in a number of formats, including RDF. More details can be found at: http:
\openrefine.org/

http:\openrefine.org/
http:\openrefine.org/

4.3 data to be imported 57

• Manual entry is prohibitively slow due to either the volume or

velocity of data received.

Where the above criteria are met a tool to process the data and

add it to the ontology is required. Such a tool would perform the

following steps:

• Read the data source;

• Convert the data source into a logical in memory representa-

tion of that data source, generally objects representing the data

structure;

• Iterate through the in memory representation inserting each

part into the data store.

Station location data is also useful in the multi-modal domain. This

information is distributed alongside the schedule data and would

demonstrate how position data is best modelled. Furthermore by

building tools that can process and combine multiple data sources

it is possible to show the benefits of using more than one data source

together.

4.3 data to be imported

Common interface files were selected as the source of railway data

to represent in a linked format since they are representative of many

formats in the rail domain that will need to be converted. Addition-

ally since this datasource is used through out the domain its con-

version will bring immediate benefits, as is demonstrated by the use

of this tool and datasource as part of the demonstrator discussed in

chapter 6.

4.3 data to be imported 58

4.3.1 Legacy Resource Format

Currently timetables are exchanged in ‘common interface file’ format,

as defined in (Network Rail Infrastructure Ltd, 2007) first issued in

June 1988 and updated regularly since to reflect changes in the UK

railway over that time (not least privatisation) this is a representative

example of rail data. It is neither easily human readable nor as dense

as a pure binary format. Rather it uses fixed length rows of 80 ASCII

characters where the interpretation of a row depends on what section

it is in.

The schedule file contains the following information:

• Schedules

• Associations (where trains are split and joined for example)

• TIPLOC Codes - These are one of the many ways locations are

refereed to within the UK rail network.

There is also a header row at the start of the file giving a unique ID

to the file and its issue date and time, along with version information

and other meta-data. The file is terminated with a trailer row, to allow

users to confirm they have a complete file, though no check sum or

similar is employed.

The schedule rows break down further into further subtypes:

basic schedule This contains header information pertaining to

the entire schedule, such as the type of vehicle and branding of

the service.

origin location The starting point of a service

intermediate location A service calling point

changes en route Where anything contained in the basic sched-

ule field changes over the course of a trains’ route.

4.3 data to be imported 59

terminating location The last call of the service

Not all record types are necessarily present for any given service.

It is possible to ascertain not just the stopping time, and place, of

a given service but also some limited meta data, including two differ-

ent trainIDs, which are also used by other data sources. The first ID

given is the so called ‘uniqueID’3 which is also used by certain other

systems (trust train activation messages use this ID), the second ID

given is the headcode. Other systems, such as train describers and

signalling systems refer to the train by this code. Whilst it is guaran-

teed a headcode is unique on the rail network at any given point in

time more than one timetabled service can have the same headcode.

Listing 4.1: CIF file example

BSNC821721612111712030000001 POO2S178117122832000 DMUS 075

S S P

BX EMY

LOGTHM 1350 13503 TB

LIGTHMNBJ 1352H00000000

LIALNGEJN 1356 00000000

LIALNGNJN 1356H00000000

LISLEFD 1415 1416H 141514161 T

LIHCKNGTN 1423 1423H 14231423 T

LIHBRTBDG 1432H00000000 2

LIBOSTON 1441 1445 14411445 T

LISIBSEY 1452H00000000

LIBELWTRJ 1459 00000000

LIWAINFLT 1508H1509H 15091509 T 2

LTSKEGNES 1521 1524 TF

Each row starts with a 2 letter code to uniquely identify the type

of data it holds and some row types are only valid in certain places.

3 the field is defined by Hicks (Open Rail Data wiki) as ‘The unique ID of the sched-
ule being activated - either a letter and five numbers, or a space and five numbers
for VSTP trains’. Details available at: http:\nrodwiki.rockshore.net/index.php/
Train_Activation

http:\nrodwiki.rockshore.net/index.php/Train_Activation
http:\nrodwiki.rockshore.net/index.php/Train_Activation

4.3 data to be imported 60

For example each train service definition starts with a basic sched-

ule row, then an origin location, followed by any number (including

zero) of Intermediate Location’s or Changes en Route and finishing

with a Terminating Location. An example is shown in Listing 4.1 of

a complete, but short schedule in this format. Note that the schedule

starts with a ‘BS’ or “Basic Schedule” line, then goes on to list calling

points, with the last listed as ‘TF’ train finishes. The time format is

twenty-four hour and the presence of an ‘H’ after a time means “and

a half” hence 1352H should be read as “13:52:30”. Thirty seconds is

the maximum accuracy this format allows for.

These files can be used in conjunction with a ‘Master Station

Names’ file which is typically distributed at the same time. This

file provides further detail about the stations refereed to in sched-

ule. Whilst TIPLOC codes are listed in the schedule file alongside a

meaningful name in English, the geographic position for example is

not provided. This is included in the master station names, alongside

side details of the type of services that may be connected with (bus or

ferry for example) and the Routing Groups, which are used for fare

calculation. By joining on the TIPLOC code it is possible to combine

this data with that in the schedule file.

The size of the files to be imported also represents a significant

test: the chosen schedule file was 564MB, in what has already been

described as a fairly dense data format. This will result in a signific-

antly larger amount of data if exported as turtle, which is a simple

text representation of linked data, presenting challenges in terms of

both processing time and available RAM. As such the system will

need to be carefully optimised to fit within the memory footprint of

a workstation-pc (24 GB in this case).

4.4 general software design patterns 61

4.4 general software design patterns

Two design patterns were considered for a system to parse schedule

files: a state machine and a factory pattern. The state machine pattern,

as set out by Shalyto, Shamgunov and Korneev, 2006, provides loose

coupling between the logic of the program and the state, which is

considered through out the literature to be a key objective of any soft-

ware architecture. The transition logic required for processing sched-

ule files is very limited and thus the state machine pattern was dis-

regarded as unnecessary in this application. The factory technique

first discussed in Gamma et al., 1994 conversely is applicable to this

system since it abstracts the construction of objects from the point at

which they are created. This is helpful in this system since it is likely

that further types of data and therefore business object will need to be

added to design in the future. The system aims to be flexible as to the

types of files parsed, importing both ‘Master Station Names’ files and

Schedules, using the same architecture. In the factory pattern ‘factory

classes’ are used to construct objects, rather than calling an object’s

constructor directly. Currently there exist two factory classes, one for

each type of file processed, which build the business objects before

they are inserted into the datastore. A deliberate benefit of the design

is that it is easily possible to add more as required.

The graphical user interface (here on referred to as GUI) partially

uses the Model View View-Model design pattern, here on referred to

as MVVM, to loosen coupling with the data processing part of the

application. The MVVM pattern is described by Microsoft (2012) and

is a common way to create GUIs when using the Windows Present-

ation Foundation. The Windows presentation foundation in turn is

a means of creating GUI’s when using the .Net framework on win-

dows desktop machines. The MVVM pattern aims to reduce coup-

4.5 software implementation 62

ling between the designed user interface, which is created using only

XAML and describes solely appearance (include interactive elements

such as mouse over animations) and the way the data is formatted

for presentation. In this pattern the data model is independent the

view model. Data representation and processing is removed again,

thus changes to how data is presented (say from a table to a graph)

have no impact on the underlying system.

4.5 software implementation

The schedule processing tool is designed in keeping with object ori-

entated best practice, namely: SOLID4 software design principles, as

first set out by Martin (2003). An example of the schedule processing

tool’s structure and inheritance is shown in Figure 4.1.

ScheduledStop

ServiceNodeBase
Class

ScheduleOrigin

ServiceNodeBase
Class

ScheduleTermin…

ServiceNodeBase
Class

ServiceNodeBase

TiplocItemBase
Class

Station

TiplocItemBase
Class

TiplocItemBase
Class

IImportedItemIImportedItem IImportedItem

IImportedItemIImportedItem

IImportedItem

Figure 4.1: Items located using a TIPLOC - one of the location codes.

The business objects represent the data contained in the file, at a

low level, both row by row and at slightly higher level representing

4 A good explanation of SOLID design principles, illustrated with motivational
posters, may be found at https:\blogs.msdn.microsoft.com/cdndevs/2009/07/15/
the-solid-principles-explained-with-motivational-posters/

https:\blogs.msdn.microsoft.com/cdndevs/2009/07/15/the-solid-principles-explained-with-motivational-posters/
https:\blogs.msdn.microsoft.com/cdndevs/2009/07/15/the-solid-principles-explained-with-motivational-posters/

4.5 software implementation 63

schedules. All low level business objects implement the same inter-

face, allowing for their population (from a string representing an en-

tire line) as well as providing methods which allow for storing them

to a graph. There exists a factory object for each file type parsed by

the system (others can be created as needed) which handles the split-

ting of the source file into lines, for the creation of business objects

and in particular for handling objects which are split across multiple

lines, such as schedules. The business objects and the factories that

create them are shown in Figure 4.2.

As a result of this design should a new file type need to be impor-

ted the tool could be extended without changes to the existing code.

A framework both for reading files into memory and for inserting

them into a triple stores is provided.

When the business objects had been created it became apparent

that some of the data they modelled was not modelled by the onto-

logy. These fields were then added as properties in accordance with

the guide lines set in subsection 4.2.1.

Another .NET practice embraced in this project was the use of the

provided settings mechanism for storing constants. This allows for

changes to the settings when ever they are required as well as keeping

the settings within source control and in one place for easy editing.

An open source third party library, dotNetRD, was used for con-

nection to local and remote triple stores. This library also allows the

construction of graphs in memory and makes it possible to perform

reasoning on them. This library was chosen using the fulfilled criteria:

• Active maintenance;

• Open source (hence free to use);

• Compatible with the other technologies in use, in particular C#.

It was discovered in implementing this project that when dealing

with very large graphs, as was the case for schedule data, it is neces-

4.5 software implementation 64

Figure 4.2: Business Object inheritance

sary to prevent the framework from interning all of the Uri’s added

as this whilst this has performance benefits they come at the cost of

an enlarged memory footprint.

Given the data volumes involved it was necessary to identify bottle-

necks and tasks that could be carried out in parallel and run these on

separate threads. The machine used for both development and bench

marking has the following pertinent specifications:

4.5 software implementation 65

4.5.1 Hardware Specification

Item Specification

Processing Intel i7-3820
5 @ 3.6 GHz. This

has 4 cores and can run 8 sim-

ultaneous threads.

Random Access Memory 24 Gigabytes

Disk Two Terrabytes, average data

rate (Read and Write) of 156

MB/s.

The graphics card fitted was of no assistance because none of the

tasks in this program were suited to offload to the graphics card.

Bottlenecks were identified by running the ‘Performance Profiler’

included with Visual Studio on the initial version of the software.

This can tell the operator which objects are using most of the memory

and which functions the schedule processing tool spends longest in.

It was apparent from this that most of the memory usage was in the

graph constructed by dotNetRDF and most of the processing time

was in constructing that graph. In order as to achieve adequate per-

formance, that is to be able to run an import whilst the data is still

pertinent, a multi-threaded approach was required. To achieve this

the data was split into chunks, after having been read from the file,

but before it was materialised as a graph. Each chunk represented

500 individual elements from the underlying file, expect for the last

chunk, which contained as many elements as were left. This reduced

the memory footprint, since the graph was only created one chunk at

a time, then stored to a file and the memory it had been occupying re-

leased. This approach also made parallel processing possible, as each

5 Intel Data sheet available from: http:\ark.intel.com/products/63698/
Intel-Core-i7-3820-Processor-10M-Cache-up-to-3_80-GHz

http:\ark.intel.com/products/63698/Intel-Core-i7-3820-Processor-10M-Cache-up-to-3_80-GHz
http:\ark.intel.com/products/63698/Intel-Core-i7-3820-Processor-10M-Cache-up-to-3_80-GHz

4.5 software implementation 66

chunk could be (and was) materialised separately. This design could

scale linearly with the number of cores available. In order as to accom-

plish the multi threaded materialization and writing it was necessary

to create a thread pool of data waiting to be processed and written.

This uses .Net’s underlying thread-pool provision but adds progress

feedback and ensures that files are only written after the data is pro-

cessed. The data was output as a series of turtle files, which were then

inserted into a triple store using a script. This work-flow is illustrated

in Figure 4.3.

4.5 software implementation 67

Select file to process

Load file into
memory

Parse and Create
Business Objects

Take a chunk of the
business objects

Add to queue for
materialisa�on

Repeat un�l all business
objects are in the queue

Whilst there are s�ll
items to process

Using dotNetRDF,
materialise the

business objects
into a graph

Once the queue has

one or more items

Save graph to file

Mark task as
complete, allow

removal from queue

Repeat 8 �mes in parallel
whilst queue has items

Figure 4.3: Data conversion work-flow

4.6 manual data entry tool 68

The graphical user interface is simple and shown in Figure 4.4. All

that was required was status feedback, for use debugging and to in-

form the user when the conversion was complete, and buttons to

select the files to import. Also available is functionality to add proven-

ance information to the schedules. Provenance information is added

to the data when it is inserted in the ontology, allowing the source of

the information to be traced, in accordance with the guide lines set

out by Tutcher (2015a).

Figure 4.4: Schedule parsing tool interface

4.6 manual data entry tool

The manual data entry tool demonstrates a technique for adding pre-

viously modelled low volume data to the ontologies. Where such data

does not warrant the development of a bespoke tool for the task and

it is not possible to interface with or alter the existing tool then a

simple universal tool allowing those with no ontology engineering

experience to add data to the ontology allows for improved data in-

tegration. There are many pre-existing ontology editors, both open

source and commercial, of which protégé and TopBraid Composer

were used during this project, however these are better suited to

those with some ontology engineering experience. This tool is aimed

at those with no ontology engineering experience and thus provides

another possible answer to the question, ‘Given the diverse inform-

ation environment within the rail industry, how can heterogeneous

datasources be combined, where there is value in so doing?’.

4.6 manual data entry tool 69

4.6.1 Manual Data Entry Tool: Implementation

The tool was constructed as a web application, with intent that

it could be deployed centrally in large organisations and used as

needed. This tool relies upon the middleware, discussed in chapter 5,

to connect to the triple store. For layout and presentation the popu-

lar ‘bootstrap’6 framework was employed to speed development and

allow for access from a range of devices.

6 Available from: https:\getbootstrap.com/. This framework provides a number of
styles alongside Javascript functionality

https:\getbootstrap.com/

4.6 manual data entry tool 70

Figure 4.5: Manual Data Entry tool work flow for adding individuals to the
ABox

The main menu presents user with the following options:

• Adding new individuals

• Viewing individuals

• Uploading data, related to specific project, namely COMPASS

as discussed in chapter 6.

4.7 results 71

The procedure for adding new individuals is set out in Figure 4.5

and shown in the screenshots available in Appendix A. In Figure A.4

(in Appendix A) the mechanism for supplying values for any proper-

ties that are expected is shown, the properties displayed are selected

based on those that other individuals of the same class have. Users

are free to enter a value or not for all of the properties shown. When

done the data is then stored in the ontology.

4.7 results

Initial tests, on the unoptimised system, were performed with smaller

schedule files, truncated to 64MB, from an original 564MB. Chunks of

this size took more than twelve hours using an unoptimised version

of the software, when full files were processed the program ran out

of memory before returning results.

The final version of the software took two minutes and thirty four

seconds to complete a cut-down (64MB input file) run. The full run

took 06:46:36, which indicates that further optimisation remains pos-

sible, however this time frame would be usable.

The files were quickly and successfully inserted into the triple store

(stardog), where the inserted RDF was verified as consistent.

As can been seen from Figure 4.6a in the optimised version per-

formance is non-linear with time, and as the limit of system memory

is approached performance degrades significantly. A summary of the

data illustrated by Figure 4.6a is available in Figure 4.6b, which again

shows that as the system consumed most of the available memory

performance was significantly degraded. Through out the testing de-

bugging tools stated that the tool alone used approximately 22 of the

available 24 Gigabytes of RAM in the test system. The non optimised

4.7 results 72

version was never run to completion, but had reached approximately

50% completion after four days.

The system also output the time taken to perform the various parts

of the conversion. Converting the business objects to an RDF graph,

using dotNetRDF took over five hours, where as reading the file from

disk and converting it to simple, lean, business objects took twenty six

seconds, which clearly indicates where the processing was required.

4.7 results 73

0

20

40

60

80

100

120

140

160

180

200

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00

N
u

m
b

e
r

o
f

C
h

u
n

ks
 W

ri
tt

e
n

Time offset (hours:minutes)

Time to export data

(a) Turtle files processing time graph

Hours from Start Number of Files Produced

1 306

2 278

3 52

4 55

5 43

6 35

7 45

8 11

9 0 (complete)

(b) CIF processing times, by hour

Figure 4.6: Time to output turtle files

The source code for this tool is available at: https:\github.com/

Chris-MorrisUK/CifParser.

https:\github.com/Chris-MorrisUK/CifParser
https:\github.com/Chris-MorrisUK/CifParser

4.8 conclusions 74

4.8 conclusions

This system was created in response to the following question: Given

the diverse information environment within the rail industry, how can het-

erogeneous datasources be combined, where there is value in so doing?

Firstly this system has shown that it is possible to make typical

industry data sources available in a linked format, by taking schedule

data, a typical industry data source and making it available as turtle

files, which can be loaded into a triple store and queried or reasoned

over.

Secondly this system has shown that even quite small data sources,

as compared to video or high data rate sensors for example, require

a high degree of optimisation and produce much larger data sets in a

linked format.

This design and implementation of this system also demonstrated

that even where the domain has been partially modelled new applic-

ations of that model will require small alterations to suit the precise

nature of the available data and its eventual use. This in turn has

wide ranging implications for the need for ontology specialists to be

involved, lightly at least, in the design phase of future projects mak-

ing data available as an ontology. This in turn has relevance to the

question: Given the current shortage of engineers with experience editing

or connecting to ontologies, is it possible to create tools which improve their

uptake and adoption?

The manual data entry tool provided another answer to the ques-

tion ‘Given the diverse information environment within the rail

industry, how can heterogeneous datasources be combined, where

there is value in so doing?’. For some projects the production of be-

spoke tools will not be financially justifiable. Where it is not possible

to use commercial off the shelf software to convert data and that data

4.9 further work 75

is of a low enough volume then it will be possible instead to use tools

to manually enter that data.

This system has also made it possible to explore: Given the velocity

and volume of data within the rail domain, can an ontology based architec-

ture be deployed on the scale of a national rail network?

The data imported covered the entire UK rail network and whilst

it would have required running overnight it was none the less func-

tional. Were the solution to be reworked so as not to create a graph

of the data, then store it as turtle, but rather to directly interface with

the triple store it may be possible to reduce the running time further.

4.9 further work

This tool could be directly connected to a datastore, thus not gener-

ating an in memory graph and serialising this to turtle files which

then require insertion. This may well allow for faster processing and

a smaller memory footprint.

5
U S E O F A M I D D L E WA R E L AY E R W I T H

O N T O L O G I E S

5.1 introduction

The benefits of adopting linked data and related techniques, even in

environments with substantial legacy resources are clear. In essence

this is achieved by first modelling the schema of the data, then mak-

ing the ABox (row) data available to the ontology. Once an area or

sub-domain has been modelled, software must be developed that al-

lows software and services within the industry to interact with the

the data in the triple store. This currently requires specialist know-

ledge, not common in the software engineering community, and this

gap presents another barrier to industrial implementation of ontology

based systems. As a minimum a developer working in the area would

need a detailed understanding of:

• SPARQL;

• XML data types;

• The APIs for the triple store to be used.

In addition to these, for the knowledge of the specific technologies

to be of value, a certain amount knowledge of higher level ontology

principles is required. At the very least a familiarity with triples and,

in an environment where reasoning is used, inference is also required.

It is reasonable to expect that most professional software engineer

will have some knowledge of XML data types, on that basis it should

76

5.1 introduction 77

be possible for them to learn the basics required to interact with the

triplestore within the lifespan of any large industrial project, learning

SPARQL or higher level concepts will take significantly longer.

Whilst it is likely that in the long term the skills gap around onto-

logy will be filled by improved education and training, in the short

and medium term the adoption of ontology linked data in the rail

domain would be considerably accelerated by the production of tools

that enable software engineers without ontology experience to inter-

act with data stored using an ontology. The RaCoOn middleware ex-

ists to bridge that gap.

5.1.1 Questions Considered

This chapter will make it possible to consider the following questions,

posed in chapter 3:

• Given that many stakeholders can benefit from combining mul-

tiple data sources, what techniques enable this?

• Can an intermediary layer isolate information systems from

changes to datastore interfaces?

• Given the current shortage of engineers with experience editing

or connecting to ontologies, is it possible to create tools which

improve their uptake and adoption?

These questions can be assessed by the construction of a middle-

ware layer to enable the combination of datastores, protection of end

clients from change, and reduction of the need for skilled personnel

to edit ontologies. The extent to which this is successful will be con-

sidered and further expanded upon by its use in the project described

in chapter 6.

5.1 introduction 78

5.1.2 Roles

The RaCoOn middleware exists as an intermediary between the triple

store holding the ontologies, and applications that require access to

those resources. In addition to enabling this simple connectivity the

middleware also provides and manages connections to REDIS, a key

value store used to handle high frequency data, and adds a secur-

ity layer. Applications use the middleware via Windows Communic-

ation Foundation (WCF) web services, which where ever possible im-

plement RESTFul design principles. The middleware represents sev-

eral contributions to ontology development for the railways: Firstly

it acts as a ‘buffer’ between the triple store and the connected ap-

plications (consumers). Different consumers have a range of access

requirements and as the market evolves it is possible, even likely, that

the selection of commercially available triple stores will change. The

middleware ensures that as the software components on either side

of the middleware evolve the larger system is unaffected; the same in-

terface will be presented to the consumer regardless of the choice of

triple store. Another key benefit the use of a middleware offers, is the

ability for developers to easily interact with a range of specialist data-

stores as needed by the application use case alongside the triplestore

itself. In the scope of this document, this is illustrated using the RE-

DIS key-value store as a lookup for high frequency data streams, how-

ever, as the technology develops many other similar storage needs are

likely to be identified.

Since some data stores don’t have their own security, an additional

benefit of the middleware is a single sign on and token system can be

handled by the middleware. After a user is authenticated by the mid-

dleware and given a token allowing continued access all datastores

behind the middleware are accessed using that token, regardless of

5.1 introduction 79

the security mechanism they employ. For systems that have complex

access control hierarchies it is possible to map each user signing on

to the middleware to their unique username, whilst systems bereft of

security can be shielded from outside access.

By using a middleware common functions shared by a number of

applications can be implemented at this level avoiding duplication.

The WCF webservices make it possible to connect to the middleware

using clients written in most common languages and from most en-

vironments, allowing developers to use the best tool for the current

project. The overall architecture is summarised in Figure 5.2.

5.1.3 Data Volumes

A major challenge to the migration from the current ecosystem of

mixed incompatible data stores to one that embraces linked data and

ontology, is that of data volumes. Whilst the market for triple stores

has moved forward significantly in the last five years and a number of

triple stores will now scale to significant volumes of data when run in

an appropriate environment, triples are an inherently inefficient way

to store most types of data. High frequency data streams, which are

common in industrial applications, such as remote condition monit-

oring, are particularly difficult to handle in most triple stores due to

the computational overhead associated with rapid updates. Tutcher

(2015a) mitigated this problem by supplementing the triple store with

REDIS, which acted as a buffer for the high frequency data.

The triple store holds a summary of the data along with a link

which can be used to retrieve it from another store. For example

where a complex wave form is recorded, its amplitude, duration and

the time at which the sample was taken could be stored as triples,

alongside a key to retrieve it from REDIS. REDIS is highly optimised

5.2 functionality 80

for fast retrieval of large amounts of data using a very simple key,

deliberately leaving security entirely to the user.

Figure 5.1: The role of the Middleware

5.2 functionality

For the middleware to provide the services shown in Figure 5.1 it

must provide a number of functions:

• Brokering: acting as an intermediary between client and server;

• Datastore aggregation;

• Provision of stored procedures;

• Provision of datastore security;

• Provision of common functionality.

Each of these will be discussed in the following sections.

5.2.1 Brokering: acting as an intermediary between client and server

The middleware must act as a broker or intermediary between ap-

plications consuming and contributing to datastores. One of the chal-

5.2 functionality 81

lenges the industry will face during a transition to linked data is that

as the datastores available evolve with time, and new technologies

are developed the interfaces the datastores present will also change.

In an established industry it can be expected that new client ap-

plications will be created on an as needed basis when required for a

project. This will likely be over an extended period, probably meas-

ured in years and there will be no ‘big bang’ style switch-over event

in which the entire industry is migrated over to linked data overnight.

Suppliers are starting to respond to the industrial need for easier to

use interfaces to triple stores, and SPARQL has existed as a constantly

evolving standard query language for some time; however this alone

does not alleviate the risks of vendor lock in when choosing a triple

store, and thus the provision of intermediaries between the data store

and the end user applications is certainly prudent, if not necessary.

5.2.2 Datastore aggregation

New datastores are being developed rapidly as the technology ma-

tures, all with different strengths and weaknesses. As the market

evolves it is possible, even probable, that new railway projects will

require access to different types of data store, in keeping with the pro-

ject’s needs. In the first instance REDIS has been selected as a second

data store to make available, since this has been used in previous

projects with RaCoOn for high frequency data. Many railway condi-

tion monitoring applications, such as alternating current field meas-

urement sensors to detect cracks in rails, or laser distance sensors, as

used in condition monitoring of railway assets can generate very high

volumes of data.

5.2 functionality 82

5.2.3 Stored Procedures

The middleware provides ‘Stored Procedure’ functionality similar to

that commonly found in relational databases. This has several bene-

fits, applicable to both relational data stores and this system:

• Improved reuse. Once a stored procure has been written it can

be used by many systems, or the same system in many places

with out rewriting it;

• Isolation between the software and the query. As such if the

representation of the data changes only the query need change,

not the system using it. In the case of ontologies, as opposed

to relational databases, this should only be relevant if major re-

factoring is done for example if a different domain had to be

used for all URI’s in the system.

• Familiarity for developers used to a relational database environ-

ment;

• Less data needs be sent to the middleware since the name of the

stored procedure is much shorter than the SPARQL required to

describe the query.

By providing a familiar mechanism to developers coming from a

relational database background, the middleware reduces the learn-

ing curve for those new to the technology. Other benefits from the

relational database domain are less applicable to the linked data do-

main, in particular the stored procedures can’t be pre-compiled for

faster execution, since the middleware is not responsible for the com-

pilation of the query.

Stored procedures created in the middleware can seamlessly use

any datastore, there is no difference to the user and no changes to the

5.2 functionality 83

implementation need be made when a different store is used, though

it is likely that the stored procedure will need to be updated to match

the API provided by the new store. Application code which has been

developed to use one data store via the middleware will continue to

do so transparently when another is added.

5.2.4 Information Security

Information Security has become an important research topic recently,

as the possibilities of electronic crime and attacks against infrastruc-

ture are considered.

The question of information security is a broad topic, and it is bey-

ond the scope of this thesis to address it in its entirety. It is however

necessary to investigate the impact on information security of moving

to a system of linked data and ontology. It is common in the literature

to divide information security challenges into three areas:

confidentiality Presenting the improper disclosure of inform-

ation as considered by (Sridaran, Doshi and Kumar Suman,

2013);

integrity Insuring that information remains accurate;

availability Ensuring that information remains available in all cir-

cumstances.

Triple stores are reaching a level of maturity similar to that of rela-

tional databases, this includes the ability to cluster for both improved

scalability and availability. Running triple stores in a virtualised cloud

environment can also result in increased availability of data.

When considering information integrity, ontology allows the inser-

tion of provenance information, making it possible to understand

why any given change was made to the data. Whilst it has not be im-

5.2 functionality 84

plemented, in this work, at the middleware level it should be possible

to include functionality in the middleware to automatically append

provenance to data as it was inserted.

The most significant contribution the use of the middleware makes

to information security can be found in confidentially. By impos-

ing a secure layer between the unsecured data store and the wider

network (or indeed internet) the middleware prevents unauthorised

access to other datastores. Taken in conjunction with the datastore

aggregation this approach has the added advantage of providing a

“single sign on” for all datastores. The trusted component, in this

case the middleware, is accessible from client machines however all

hosts running datastores trust only the middleware and not the larger

network.

5.2.5 Centralising Common Functionality

In an ontology architecture using middleware common functional-

ity may be moved into the middleware to avoid needless repetition

in keeping with the software development doctrine of ‘Don’t Repeat

Yourself (DRY)’. This centralisation of functionality can make clients

lighter weight and less time consuming to develop. The middleware

must also implement functionality to handle security and to query

the data stores the middleware connects to, both using stored proced-

ures and queries. The following functionality is commonly needed by

systems connected using an ontology for data storage:

• Free text search of individuals within a class, using the label

text;

• Get all individuals of a given type;

• Add new items.

5.3 middleware design patterns 85

5.3 middleware design patterns

When developing an ontology architecture the techniques used to

link client applications to datastores are similar to those faced in any

other domain of software engineering. The design of this software

employed several common software engineering techniques for ex-

ample, where exactly one instance of a class was required, such as

connecting to a datastore, the ‘Singleton’ pattern was employed to

ensure only one instance was ever created. Additionally in order as

to prevent repetition of code SOLID principles (previously discussed

in chapter 4) were employed.

5.4 implementation

In order as to provide the functionality set out in section 5.2, the mid-

dleware was implemented as collection of webservices, using the win-

dows communication foundation (WCF). These can be consumed by

clients created using a range of development techniques, and libraries

exist to aid connection to WCF webservices from several languages,

however it is most common to use the .Net family of languages for

the client.

5.4.1 Modular Structure

The middleware solution contains the following modules:

racoonmiddleware Holds the Webservices and calls the other

projects as needed;

middlewarebussinessobjects Holds representations of objects

referred to by the ontology as C# objects;

5.4 implementation 86

redisconnector Acts as the intermediary between the middle-

ware and REDIS.

storedproccreator This module compiles to provide a simple

graphical (Win32) interface for creating and editing stored pro-

cedures.

stardogconnection Acts as the intermediary between the mid-

dleware and Stardog.

uploadldltool This module compiles to a very simple graphical

tool (Win32) for testing the processing of LDL files, required for

a specific project which is set out in chapter 6. It is not intended

for production use, rather it was a debugging tool before the

functionality had been added to another system.

usermanager This tool manages the users that have access to the

middleware. It is a small, simple tool for use by system admin-

istrators.

The relationship between these modules and external modules is

shown in Figure 5.2.

5.4.2 RacoonMiddleware

This module contains the webservice definitions and the functional-

ity directly related to them and thus is the part of the middleware

with which external developers will interact directly. In particular it

contains definitions of all the responses that can be given by the web-

services and all the parameters accepted.

In keeping with software engineering best practice, for systems

providing many similar functions, this module in particular makes

heavy use of SOLID design patterns.

All of the responses returned by the webservice extend a simple base

5.4 implementation 87

Fi
gu

re
5

.2
:T

he
in

te
ra

ct
io

ns
be

tw
ee

n
th

e
m

id
dl

ew
ar

e
m

od
ul

es
,b

ot
h

in
te

rn
al

an
d

ex
te

rn
al

5.4 implementation 88

class entitled ‘SimpleRacoonResponse’, which provides the basic de-

tails every response from the webservice will include, namely:

authorisationok A Boolean value indicating if the token provided

was accepted. If this is false then the token is not valid. The most

probable cause for this is the token timing out, since they are

only valid for a given length of time, currently configured as

one hour.

error An exception, if this is not null an error of some kind has

occurred. The message should be suitable for display to a user

and the type of the exception should be informative.

status If this is true the operation completed successfully and the

results can be replied upon. If it is false then the results should

be discarded.

This inheritance is set out in Figure 5.3, which also gives details of

the possible response types. The response classes in turn all either im-

plement one of the interfaces set out in Figure 5.4 or a extend a class

that does. This was in keeping with good object orientated design

practice, since every response requires some common authorisation

and error handling functionality as set out above and it allows the

system both handling and generating those responses to be written

once, not rewritten for every webservice. Inheritance was also used by

the classes implementing the webservices, in keeping with the prin-

ciples of reusing code rather than copying it, as shown in Figure 5.5.

The RacoonMiddleware module is also responsible for acting as

an ‘intermediary’ between multiple different data stores. Within the

framework discussed Stardog is used as the main datastore (the

triplestore), with REDIS support included to provide a buffer for

high velocity data streams. However the framework is flexible and

would allow for the addition of extra datastores with no impact on

5.4 implementation 89

Fi
gu

re
5

.3
:T

he
re

sp
on

se
ty

pe
s

re
tu

rn
ed

by
th

e
R

aC
oO

n
M

id
dl

ew
ar

e

5.4 implementation 90

Figure 5.4: The interfaces implemented by webservice responses

the existing stores or the framework. In order as to isolate this data-

store specific code from the rest of the system it is implemented in

separate Dynamic Link Libraries, here on referred to as DLLs. This

allows for:

• the easy addition of new datastores;

• reduced regression testing when functionality within the DLL

is changed to match changes in triple store interfaces;

• logical separation from unrelated code.

In order as to be usable by the larger system the DLL must make

available or ‘export’ an implementation of the interface set out in List-

ing 5.1. Stored procedures have a field setting out the fully qualified

name of the stored procedure’s type, as seen in Listing B.1 so if the

DLL is in memory all that needs be done to access a new datastore

is create a stored procure with that type specified and it will be used,

with no code changes to this module.

5.4 implementation 91

Fi
gu

re
5

.5
:S

el
ec

te
d

w
eb

se
rv

ic
es

5.4 implementation 92

Listing 5.1: The IQuery interface, which must be implemented by all execut-

able queries

/// <summary>

/// An abstract query, targeting any data store. Includes methods

for setting any variables included in the query

/// </summary>

public interface IQuery

{

void SetTarget(string server,string datastore);

void SetQuerry(string queryText);

IEnumerable<MiddlewareParameter> Execute(IEnumerable<

MiddlewareParameter> parameters, Session session,

ParameterTypeEnum returnTypeWanted);

}

As can be seen from Listing 5.1 queries and stored procedures man-

aged via the middleware can take any number of parameters, which

can be one of several types:

uri Unique Resource Identifiers, as used in linked data;

string String data and all other data types not specifically handled;

byte For transferring binary data.

This list can be expanded if needed. These restrictions only apply

to stored procedures and to functions directly passing queries. Task

specific webservices can take or return any type including a business

object related to the operation they perform, or a simple in built types.

This system of stored procedures can have a significant impact on

the ease of integration of software systems. This also makes it possible

to demonstrate how stored procedures can query multiple data stores.

As such they are implemented within the RacoonMiddleware module,

Listing B.1 shows the implementation.

5.4 implementation 93

An XML file, holding numerous instances of the class shown in The

implementation of the stored procedures is included in Appendix B

in Listing B.1 provides the database of stored procedures. For effi-

ciency this is read into a dictionary in memory on start-up then stored

procures are retrieved, using a hash of the stored procedure’s name

as its key in the dictionary. This allows for very fast access to stored

procedures, which is necessary when dealing with high velocity data,

such as that from sensors.

5.4.3 MiddlewareBussinessObjects

Modelling real world data in object orientated programming as ‘Busi-

ness Objects’ is a staple programming technique when dealing with

conventional data storage. Typically the business objects either hold

only instance data, in which case it is known as an ‘anaemic domain

model’. The alternative, putting business logic and validation in the

business objects is known as a ‘rich domain model’. Where ever the re-

strictions are placed, be they in the domain model or in another layer,

this is where traditional developers model the domain. When using

ontologies both the model and as much as possible of the business

logic belong in the ontology, however, in order as to work with this

in a conventional programming language business objects, repeating

those in the ontology are required for all items the software has to

interact with. For example, the ontology may have a very detailed

model of a train and its components, however a passenger informa-

tion application would not need (or want) a “Wheel” business object,

trusting instead that the ontology presented the correct behaviour of

a train service and modelling only that service concept in the applic-

ation.

5.4 implementation 94

Modelling concepts stored in an ontology as business objects in

a programming language makes manipulating them more intuitive,

both for external users and for developers working on the middle-

ware. Frameworks exist that can automatically generate objects from

classes held in triple stores1, however, at point this work was under-

taken none were available for C# and business object development

was done manually. Note that whilst ontologies allow multiple in-

heritance neither C# nor JAVA are able to support it. In the imple-

mentation for this system interfaces were used to address this issue,

removing the need for inheritance from multiple base classes.

This entire module is compiled as a DLL, to allow for its reuse in

other systems and to keep coupling between the business objects and

the implementation of the webservices loose.

5.4.3.1 From objects to individuals

Moving from the “Open World” model common to RDF and ontolo-

gies, to the more familiar paradigms of Object Orientated languages

requires developers (or the designer of the tool, where this is auto-

mated) to make some decisions as to how the classes and properties

of the data model are modelled as objects and properties in the busi-

ness objects. In the case of object properties, that is properties that

‘connect pairs of individuals’ as specified in Parsia et al. (2012b), rep-

resentation as an object is possible, so long as both the individuals to

be linked are of types already modelled in the system. Unless there

are cardinality restrictions, such as marking a property as functional,

then using a list or similar collection class is an appropriate way to

link objects, unless the developers domain knowledge rules out this

possibility. For example when linking objects of type train and driver

via an object property of type “currentDriver” it would be unneces-

sary to use a list, even if the property has not had any cardinality re-

1 the open source module JENA has this capability

5.4 implementation 95

strictions placed upon it to reduce the amount of reasoning required.

This is illustrated in Listing 5.2 which shows the relationship between

Balises and Balise Groups. Cardinality restrictions require checking

when an object is inserted and thus represent a (small) performance

cost. In the most restrictive of decision logics cardinal restrictions are

not available; if a property is marked as functional, that is it uses the

type owl:FunctionalProperty, then an individual can have at most

one value for that property. Rules will remain encoded in the onto-

logy, rather than be duplicated in business objects, to allow changes

to be made to the rules in the ontology.

Listing 5.2: Linking of Balises to BaliseGroups

public List<LDLBalise> Balises;

In an industrial environment characterised by legacy systems, busi-

ness objects may also be used to model source data sets for insertion

into the ontology. Whilst this seemingly extraneous step isn’t required

in every instance, where the data is complex it allows it to be normal-

ised and collated before its insertion to the ontology.

In the case of Datatype properties, also known as value proper-

ties, all that need be done generally is adding a public field of the

appropriate type to the object. The datatypes are restricted to inbuilt

XML data types, which align with the available datatypes in most

programming languages.

5.4.4 Datastore connections

As discussed in subsection 5.4.2 a modular architecture is employed

through this system. The modules which connect to external data-

stores are refereed internally, and by this document, as “Connect-

ors”. In the RaCoOn Middleware two modules, Stardog Connector

5.4 implementation 96

and REDIS Connector are examples of means of connecting to ex-

ternal data stores. These are compiled as DLLs and so as they are

loaded into memory when the software requires them. New connect-

ors can be added with little or, in the case of stored procedures using

only stored procedures, no alteration to the other modules. By im-

plementing connectors, and hence decoupling the software artefacts

using them, the danger of cascades of changes needing to be made

in response to a change in one of the connectors is greatly reduced.

Among the benefits of this is reduced regression testing when altering

any given module.

In order as to be used by the wider system the module exports

a Query, compliant with the IQuery interface defined in Listing 5.1

allowing the RacoonMiddleware to query this data store.

5.4.4.1 Stardog Connector

The stardog connector module shows how a triple store can interact

with the middleware and then client applications. The dependencies

directly pertaining to stardog are imported in this module. Should

they require updating (as they periodically do) then only this module

requires recompilation.

5.4.4.2 REDIS Connector

This DLL has functionally related only to the REDIS key-value store.

It exposes those of the APIs functions such as are required for use

with an ontology architecture and maintains the required state in-

formation.

5.4 implementation 97

5.4.5 Administration tools

Other Modules: StoredProcCreator, UploadLDLTool, and UserMan-

ager

Although the middleware is designed for use by developers, in day

to day use systems administrators will need to maintain the system,

without input from developers. As such two tools have been pro-

duced to aid in the upkeep of the system. A third was required

for development purposes. The tools compile into executable pro-

grams with user interfaces, not DDLs or Webservices. These modules

provide examples of the supporting tool chain that is required to ac-

company any means of connecting users to datastores.

The following tools were made:

user manager This simple tool allows the creation of new users

and the changing of passwords for existing users.

stored procedure edit tool Whilst it is possible to create stored

procedures by editing the XML file which stores the definitions,

forcing administrators to do so would be another barrier to use

as such it is desirable to create a simple user interface to enable

this.

upload ldl tool This tool was created for testing and debug-

ging purposes. In large projects it is possible something similar

would again be required.

As with other elements of the middleware code reuse is a key

theme. For example the UserManager requires the business objects,

since they model a user and the REDIS connector, since that is where

the users are stored.

5.5 access control implementation 98

5.5 access control implementation

Access control is a critical consideration in industrial applications

where sensitive information is common place. Although linked data

is often open to access by all, this is not an absolute necessity, and

support for some level of granular access control would be a must

have for most companies.

The implementation of access control functionally provided by the

middleware is spread across a number of modules. The client applic-

ation follows the procedure outlined in Figure 5.6 for authentication.

Once the token has been received successfully the process shown

in in Figure 5.7 is followed.

Once the token has been issued to a client it is valid for a fixed

amount of time (in the example implementation this is set at one hour,

however this is defined as a constant for ease of alteration) after which

the client receives an error if it is used. The client must then re-apply

for a token, once again using the procedure set out in: Figure 5.6. The

use of tokens reduces the number of times an end users credentials

must be transmitted securely over the network, which would other-

wise need to be done with every call to the webservice. Aside from

reduced bandwidth usage this scales better on the server-side; the

token need simply be checked for validity, rather than recalling the

users details and checking the stored password hash.

5.5 access control implementation 99

Middleware Authentication

MiddlewareClient

P
h

a
se

Calls

Authenticate

Report Failure

Connect to REDIS

Credentials

present in

REDIS?

Receive Token

No

Generate Token

Store Token

Calculate Expiry

Time

Send Token

Store Token until

required

Figure 5.6: Authentication work-flow

5.6 conclusions 100

Webservice Access

MiddlewareClient

P
h

as
e

Calls Any
Webservice

Is the token
valid?

Display Error

Response With
Authorisatio
nOK = false

Process RequestDisplay Response

Response with
informa�on and
Authorisatio
nOK = true

Request includes
Token

Figure 5.7: Use of authentication token

5.6 conclusions

The case study in the following chapter made extensive use of this

middleware and further conclusions are found at the end of that sec-

tion.

In chapter 3 a number of questions are posed, first amongst them

is:

How can datastore security be managed within the setting of an ontology

and IT infrastructure?

The middleware is an example of a way to provide security to a

datastore with none built in. REDIS, by design, has no security, leav-

ing it to the consuming application for improved speed of data stor-

age and retrieval, which is that project’s main focus. When REDIS

is hosted on a non publicly accessible server (or port) and accessed

5.6 conclusions 101

via the middleware only authorised users can store or retrieve data.

The technique used in the middleware of issuing tokens valid for a

limited time has become popular within the industry, though other

techniques could also be successfully applied.

Given that many stakeholders can benefit from combining multiple data

sources, what techniques enable this?

Using the middleware as an example we have shown that it is pos-

sible to combine multiple data stores by using the same intermediary

to connect to all the different datastores. Services run within that

intermediary have access to all datastores and thus can perform op-

erations which aggregate data.

Can an intermediary layer isolate information systems from changes to

datastore interfaces?

The use of a cut-out or intermediary between client software and

a datastore can safe guard the client application against changes to

that datastore or its interfaces. The middleware provides an example

of such an application.

Since the completion of this project Stardog has altered its API and

in order as to implement other projects it was necessary to alter the

stardog connector module to enable continued operation. Once the

stardog connector module had been updated the middleware and

the dependant tools continued to operate as before.

Given the current shortage of engineers with experience editing or con-

necting to ontologies, is it possible to create tools which improve their uptake

and adoption?

The middleware acts as an intermediary with a known and easily

understood interface with external developers. This was used effect-

ively as part of the work presented in chapter 6, where it is assessed.

5.7 further work 102

5.7 further work

More complete integration of differing data stores is possible - cur-

rently there is no webservice to summarise high frequency data and

insert the bulk data into another store. This would be easily achieved

within the existing framework, however, none of the projects for

which the middleware was used have required it, thus it has not

been implemented. Before the software could be commercialised it

would be necessary to subject it to analysis by penetration testers to

find any vulnerabilities in the security mechanism.

5.7.1 Outstanding Questions

5.7.1.1 Scalability

If the middleware is to be deployed at very large scales, handling high

frequency sensor at a national or even global scale then scalability

challenges will need further examination.

The middleware is written in a multi-threaded manor, such that it

will perform better the more processing cores it has available, how-

ever there exists a ceiling beyond which extra hardware will no longer

improve performance. The first outstanding challenge is assessing

where that ceiling falls and at what scale it would become problem-

atic, if at all. Scalability is already considered within the datastores to

which the middleware currently acts as a gateway. Both REDIS and

Stardog support clustering, and since the middleware (along with the

datastore APIs) are written such that if clustering were deployed with

either datastore no changes would be necessary to the middleware. If

further performance improvements are found to be necessary then

the following changes could be considered:

5.7 further work 103

• Deploying multiple servers running the middleware with re-

quests directed to them by a load balancer. This would require

minimal alteration to the middleware as it contains no state in-

formation.

• The authentication could be handled by an external project de-

signed purely for that purpose, such as shiro2. This would offer

two advantages:

– Efficiency gains: One performance bottleneck in the mid-

dleware is likely to be authentication, this project is dedic-

ated only to providing efficient authentication;

– Improved Security: This project has already been heavily

tested for security vulnerabilities and is regularly updated

whenever they are found.

• Moving to a containerized architecture. This eliminates the over-

head of a virtual machine for each deployment of the middle-

ware, in a web-scale, load balanced, environment. Since there is

no state preserved in the webservices and WCF webservices can

be run in containers, no major issues are foreseen converting to

this architecture.

5.7.1.2 Datastore Access Speeds

The two datastores used in this system have very different speed char-

acteristics: REDIS is optimised purely for high frequency data, whilst

stardog performs reasoning, which has a performance penalty. Whilst

these different speeds were observed over the course of this project

they were not measured, nor did this cause any issues. Were services

performing combined inserts to be created this synchronisation issue

would require further consideration.

2 More details available at: https://shiro.apache.org/

https://shiro.apache.org/

6
C O M B I N E D A LT E R N AT I V E P O S I T I O N I N G A N D

S I G N A L L I N G S Y S T E M

6.1 introduction

In the financial year 2015/16 Network Rail spent £106,008,691.22
1

compensating operating companies for unplanned delays. Every week

many tens of thousands of delay minutes accrue on the railway, and

of these many thousands are attributed to signalling failures. The

delay caused to passengers as a result of such failures degrades cus-

tomer experience and contributes to negative public perceptions of

the railway. The Combined Positioning Alternative Signalling System,

(COMPASS), is a system to provide a degraded mode signalling sys-

tem with the primary objective of reducing the impacts associated

with failures of the main signalling system. Fringe benefits of such

a system also include improved vehicle positioning relative to the

existing track circuit based system, leading to improved passenger in-

formation and the potential for use as a low cost primary signalling

system on lightly used lines.

The COMPASS project was carried out in conjunction with indus-

trial partners, and thus it was important that the end result was a

demonstrator that could become a commercially viable product. This

enabled the investigation of those questions pertaining to the avail-

able skills within the industry, those related to the deployment of

1 This information is made available by Network Rail at https://www.networkrail.co.
uk/who-we-are/transparency-and-ethics/transparency/datasets/. The relevant
data is headed ‘Payments for disruption on the railway made under schedule 8’ and
further data is available for schedule 4, planned disruptions.

104

https://www.networkrail.co.uk/who-we-are/transparency-and-ethics/transparency/datasets/
https://www.networkrail.co.uk/who-we-are/transparency-and-ethics/transparency/datasets/

6.1 introduction 105

ontology based architectures on a large scale alongside providing a

means of verifying the work done in chapter 5.

6.1.1 Commercial Partners

The university of Birmingham carried the project in conjunction with

Siemens (Westinghouse) and Park Signalling Ltd. All ontology and

data integration based work was undertaken by the author, whilst the

other partners provided all other subsystems and made engineering

support available for integrating them.

6.1.2 The commercial case for degraded mode signalling

The involvement in this project of commercial partners demands that

it have a business case, in this case the project was completed in re-

sponse to a request from Network Rail in conjunction with the railway

safety and standards board and Future Railway.

According to Network Rail historic delay attribution data (Network

Rail Infrastructure Ltd, 2017), signal failures are responsible for a sig-

nificant proportion of the delays on the UK rail network. Delays from

a single type of signalling failure (track circuit failures) contributed

103260 minutes (over 71 days) of aggregated delays over a single 28

day reporting period, and these represent the largest delay for which

the infrastructure manager is responsible. The industry is keen to

explore potential solutions to issues caused by signalling delays. Net-

work Rail, upon whom the costs fall, are particularly keen, as stated

in Rail Technology Magazine (2015)

[Network Rail] believe the COMPASS solution can reduce

delays by improving the current signalling system’s ability to

6.1 introduction 106

recover from system failures more rapidly, as well as providing

enhanced resilience to the network for the future.

6.1.3 Objectives

In the tender request the customer (Network Rail) gives the purpose

of the system as: “to automate the manual processes involved in Tem-

porary Block Working”. Temporary block working is the current fall-

back procedure whereby trains are allowed to pass through sections

of track on which the signalling system has failed. Several consortia

are creating products in response to this tender and it is possible that

more than one will be selected. In the UK rail domain the Infrastruc-

ture manager specifies systems, they do not design or build systems

themselves, however they will evaluate the system in accordance with

the tender document. To add complexity in this case the desired spe-

cification requested by the infrastructure manager changed over the

lifetime of the project, as did the personnel allocated to it. This is a

common challenge in real projects and thus representative of projects

within the UK rail domain. Notably the amount of automation expec-

ted was reduced and the requirements altered such that there must

always be a man in the loop. Furthermore it was clarified that the sys-

tem would at no time be an ‘Alternative Signalling System’, rather it

was to provide ‘Degraded Mode Working’ and would never be used

outside of those circumstances.

The COMPASS demonstrator aims to show how ontology can form

the core of a fall-back signalling system, reducing the impact of sig-

nalling system failure, keeping trains moving even when the main

system has failed. The proposed solution is agnostic to the failed sig-

nalling system - either a traditional national signalling system em-

ploying a fixed block system or a modern moving block system.

6.1 introduction 107

The demonstration scenario assumed new equipment could be

placed in two physical locations: In Cab, and in the Rail Operating

Centre (here on ROC - effectively a control centre or modern sig-

nal box). It should be noted that cost is also important, this system

cannot cost as much as a main signalling system, as such certain com-

promises are required. Guidance from Network Rail suggests that

points should not be remotely controlled, rather the lie of the points

(also known as switches or turnouts) should be detected and trains

only routed where that permits. This reduces the safety criticality of

the software and thus the level of (expensive) certification required.

In particular the infrastructure operator wished to avoid the need for

SIL level 4 certification, as such it was also requested by Network Rail

that the system not issue trains authority to move without manual

intervention. It is expected that improved knowledge of train location

will also make possible improved passenger information.

6.1.4 Client Requirements

The requirements from the client were set out in a tender documents

and modified verbally, they may be summarised as:

• The replacement of temporary block working with a more effi-

cient solution. Originally this was to be the automation of tem-

porary block working, however in light of guidance from the

infrastructure manager there will still be a manual element;

• The system shall be deployed in a limited number of prede-

termined areas, were signal failures risk the greatest impact.

This also differs from the original specification, which required

scalability up to providing a national train position database.

The area need not be a plain line, but can and likely will have

6.1 introduction 108

multiple entrance and exit signals. The area can be bi or uni

directional.

• The accuracy of train location data and hence arrival times es-

timation should be better than is available from the existing

track circuit based systems;

• ‘System shall be separate from the existing signalling system’;

• Be resilient to cyber attack, physical vandalism and deliberate

sabotage;

• ‘maintain, in memory, train location to a given time stamp for

reference purposes’ ;

• Ease of adding other datasources when they become available

would be an advantage;

• ‘adopt a multi-layered solution for train location.’ That is take

train position information from multiple sources.

In order as to achieve the above objectives, in particular, the adop-

tion of a multi-layer train location solution and the improved location

accuracy it is necessary to bring together data from multiple sources.

Use of an ontology architecture would minimise the development ef-

fort required to accomplish this.

6.1.5 Questions Considered

The project also answers the questions set out in chapter 3, by allow-

ing the projects discussed in chapter 4 and chapter 5 to be considered

in an industrial setting. As well as verifying the output of those two

projects, this project allows for the consideration of ontology exten-

sion in an industrial setting and the use of ontology based systems

in conjunction with the traditional information systems employed in

6.1 introduction 109

the rail domain. The integration of conventional information systems

and ontology based systems will form a key part of the deployment

of ontologies in the rail domain and requires understanding before

that process can take place.

The following questions in particular will be addressed through

out the implementation of this project:

Given the diverse information environment within the rail

industry, how can heterogeneous datasources be combined,

where there is value in so doing?

As set out in subsection 6.1.4 and subsection 6.1.3 this project employs

ontology for data integration, allowing the investigation of the first

question listed above.

Given the current shortage of engineers with experience edit-

ing or connecting to ontologies, is it possible to create tools

which improve their uptake and adoption?

There will be only one ontology engineer deployed on this project

(the author), so the use of ontology for data integration with resource

constraints will also be examined. The projects commercial partners

will provide software engineers with a strong signalling and software

development background, but do not have resources experienced in

ontology development.

Can an intermediary layer isolate information systems from

changes to datastore interfaces?

The use of the middleware described in chapter 5 will enable for

consideration of the interchangeability of datastores.

6.2 system design and specification 110

Given the velocity and volume of data within the rail domain,

can an ontology based architecture be deployed on the scale

of a national rail network?

For this project to be successful the client needs to see the system

operating with national scale data.

6.2 system design and specification

In response to the requirements set-out in subsection 6.1.4, and in

conjunction with industrial partners, the demonstration scenarios de-

scribed in subsection 6.2.1 were designed. These scenarios made it

possible to demonstrate that the techniques selected will be capable

of meeting the client’s specification and produced a system which, if

the client chooses to proceed, can be commercialised.

The system is referred to by the commercial partners as the ‘Secure

Train Information Recovery’ system or STiR and that name is used

throughout this document.

6.2.1 Demonstrated scenarios

Two demonstrations were performed, in response to two different

operational scenarios: The first scenario demonstrates normal opera-

tion, with ontology and supporting tools connected to and processing

data-feeds from the UK infrastructure manager, Network Rail. This

first scenario could be extended to include providing improved cus-

tomer information. The second scenario focused on degraded mode

operation and showed how vehicles could transition to COMPASS

signalling and pass through along tracks with failed signalling. More

details are given in subsection 6.5.2.

6.2 system design and specification 111

6.2.1.1 Normal Operation - Quiescent State

First Scenario

In the first scenario the railway is assumed to be operating normally,

with the system in what is referred to as a ‘Quiescent State’. In COM-

PASS this is used to demonstrate the system monitoring the locations

of services already running over the network, ready for use as the

‘base state’ when a failure occurs. The train location data used in this

scenario came from the Network Rail open data feeds, which were

used in conjunction with a static map of the network, provided by

the industrial partner. These two diverse data sources provide good

examples of typical industry data sources, that may need integration

in a functioning industry wide system.

In normal operation the demonstrator tracks the locations of all

the trains in the network, allowing the provision of better customer

information as well as maintaining a model of the running system

in readiness for degraded mode operation. This demonstrates that

should a signalling fault occur the system would be able to respond

appropriately. Tracking of locations is illustrated by displaying those

positions on a map, annotated with the headcodes of the trains being

tracked. A proposed extension to this scenario calls for the display

of metadata for the train - projected arrival time for example - along

with the headcode. The use of ontology in this project also makes

easier displaying such things as live updated possible connections, in

light of the arrival time.

The quiescent state demonstrator monitors vehicle movements

across the entire British rail network, and as a result provides solid

evidence of the ability of ontology based systems to scale to the data

volumes and rates needed in a nationwide industry deployment.

6.2 system design and specification 112

6.2.1.2 Degraded Mode

Second Scenario

Degraded mode occurs when the underlying signalling system is not

operating as intended, regardless of reason, and signaller chooses

to use the COMPASS system to manage the train through the area,

known within this project as the ‘area of interest’. It is expected,

though not required, that the area will be relatively small and when

the end of the area is reached the train returns to the control of the

primary signalling system.

6.2.2 System Architecture

A system was designed to meet the client requirements, which was

capable of performing the demonstrations outlined in subsection 6.2.1.

This required sub-systems from multiple suppliers and which would,

in implementation, be split between the signalling control centre,

known in the UK as a ‘Rail Operating Centre’ and the cab of every

train fitted with the technology. For demonstration purposes all sys-

tems were present in the same room and physically connected; radio

telecommunications being beyond the scope of the demonstrations.

The demonstration system adopted the architecture set out in Fig-

ure 6.1.

6.2 system design and specification 113

Figure 6.1: Full System Dataflows

The purpose of each sub-system is described in subsubsection 6.2.2.1.

6.2.2.1 Degraded Mode Demonstrator Organization

The following elements are housed in the control centre:

6.2 system design and specification 114

vls centre comms Virtual Line-side Signalling, which handles

communications between the in cab elements and the control

centre elements. This is a pre-existing commercial product mod-

ified for this project.

dmc - diverse monitor and control This component acts a

central control block bringing all the other subsystems.

rbc - radio block control This is a standard part of a moving

block signalling system. It is a pre-existing commercial product

which handles safety critical aspects of the system.

pcidr Track based Point Control Inhibit, and Detection Repeat (PCIDR)

and Control

This ‘isolates’ the points (switches). Whilst the system is in oper-

ation the points do not move. The current position of the points

is detected and fed back to the rest of the system, which will

only signal trains to pass in directions allowed by the points.

stir interlocking This is a simplified version of a conventional

signal interlocking, since the points are isolated.

racoon The Railway core ontologies. This integrates data from a

number of different external and internal sources, alerting the

other components when a train is approaching. This in turn

comprises a number of sub-systems:

• The ETC Message service; This receives ETCS messages

and triggers appropriate changes to the ontology;

• The RaCoOn Middleware, as discussed in chapter 5 it acts

as a buffer between the others systems and the datastores;

• The datastores;

6.2 system design and specification 115

• A system to display train locations on a map. In this case

an existing rail simulator, BRaVE which discussed further

by Wen et al. (2015).

The data flows between these elements are illustrated in Figure 6.2.

In order as to display instructions to the train driver (the system

does not employ automatic train control at this point) a further in

cab element is required. There are additional components used only

for demonstration purposes, and would not have been included in

the finished system.

6.2 system design and specification 116

Simulated Train
Posi�ons

Network Layout

Ontology

Diverse Monitor
and Control

PCIDR Radio Block Control

Sta�c Data, via LDL file

GPS encapsulated in
ETCS Messages over IP

Virtual Line Side
Signalling

Front Cab Rear Cab

Proprietary System
(Key to decrypt an image to display)

Proprietary System
(Key to decrypt an image to display)

RS232 – (Simulated) GPS distribu�on

ETCS Messages

RS232 – (Simulated) GPS distribu�on

ETCS Message
Service

RaCoOn
Middleware

ETCS Messages

WebService Calls
(XML)

SPARQL

Train Posi�on
Display

Custom Messages (UDP)

Figure 6.2: Demonstrator Two Dataflows. Note that links in green are
demonstration only - not part of the final solution

As can be seen from Figure 6.2 links between sub-systems, in par-

ticular those from different suppliers, use ETCS messages for com-

munication. ETCS (discussed in subsubsection 2.7.1.1) uses a stand-

ardised set of messages for communication with the train, and these

6.3 data sources 117

messages are employed here between sub-systems. This was chosen

for a number of reasons; firstly the industrial partners in this project

had pre-existing expertise with this standard. Secondly the standard

can easily be implemented over an Ethernet link, simplifying con-

nection and lastly some sub-systems could only communicate in this

manor.

In order as to demonstrate the system it was necessary to use a rail

simulator to recreate the effect of the train being in motion. The sim-

ulator generated coordinates representing the position of the front of

the simulated train. These were sent to the in-cab signalling equip-

ment in the same format as would have been used were the data

coming from a real GPS receiver mounted on a train2. The same po-

sition data was then sent to RaCoOn, to simulate the train sending

position data.

6.3 data sources

A number of specific data resources would be needed to support the

demonstrators outlined in subsection 6.2.1. These are detailed in the

following sections and illustrated in Figure 6.3:

6.3.0.1 Schedule Data

For this project schedule data was obtained in the format of CIF files.

This is a dense data format, holding weekly advance schedules.

Schedule data is comparatively coarse, primarily listing station call-

ing times, alongside some supplementary information regarding the

type of rolling stock used. In this file the trains are identified by head-

code, which is unique on the rail network at any one time, however

multiple trains are assigned the same headcode at different times. A

2 A NMEA string delivered over a serial bus (RS232)

6.3 data sources 118

Train Describer Feed Network Layout

OntologySchedules

Very Short Term Plan

Train Movements

Proprietary Train Position
Systems

Figure 6.3: All Possible Data Sources for integration

further unique identifier is therefore supplied, which can be linked

to other data feeds, but not directly the train describer feed, which

uses only the headcode. This datasource is described in more depth

in subsection 4.3.1.

This is parsed using the tool described in chapter 4.

6.3.0.2 Train movement data

Train movement data, from the Network Rail webservices in particu-

lar the train describer feed. This feed supplies messages when a train

steps from one signalling “berth” to the next.

Data is taken from the train describer feed, which is provided by

Network Rail 3. This feed provides messages from the train describer,

which is a part of the signalling system that provides information to

the signaller. This demonstrator uses only the “Berth Step” messages,

which are generated whenever a train moves from one berth to the

next. In the context of a signalling system berths are a region of track,

protected by a signal, in which a train is located, a further definition

3 available at: stomp:tcp://datafeeds.networkrail.co.uk:61618

stomp:tcp://datafeeds.networkrail.co.uk:61618

6.3 data sources 119

may be found in Rail Safety and Standards Board (2004). As such

the progress of a train across the network can be tracked, if used in

conjunction with a map of signalling berths.

For this project it provided one of the key sources of train location

data, obtained on a national level, to demonstrate the ability of the

system as a whole and ontology in particular to process data on this

scale.

6.3.0.3 Absolute Position Data

The absolute position of a rail vehicle, that is its position relative to

the surface of the planet can be obtained from a Global Navigation

Satellite System (GNSS), based on timing signals from satellites in

known geostationary orbits. Positions are normally derived in terms

of latitude, longitude and altitude which then needs combining with

further data (typically a map) in order as to be meaningful to users.

The Global Position System is the oldest GNSS and is the system

chosen for this project, based on the low cost of compatible hardware.

Were this project commercialised a full evaluation of the available

options would be required.

Position can be expressed using multiple coordinate systems and

projetions. The system chosen depends on the area that needs to be

represented and how the data needs to be manipulated. A through

review of map projections is well behind the scope of this thesis, how-

ever the following projections were used:

• WSG84

• OSG36

WSG84 is the standard coordinate system used with GPS. It covers

the entire globe, which it models as a spheroid. OSG36, commonly

known as British National Grid is a coordinate system used only

6.3 data sources 120

within Great Britain. It used only for display purposes in this pro-

ject, since the available maps for displaying data used this format.

It is intended that when this project is implemented GPS provides

the more accurate data stream, allowing for better customer inform-

ation and providing a fall-back in the case of failed track circuits, as

well as making it possible to run trains closer together.

GPS data was simulated for the demonstrators. The data recreated

a feed from a GPS unit fitted to a train cab and as such the data was

supplied as a standard NMEA string, wrapped in an ETCS message.

Accuracy issues were not considered in this demonstrator, had they

been there would have been a need to combine balise pass data, to

know which line a train was on, with the GPS data, since GPS ac-

curacy is not always enough to know with certainty which of several

parallel lines a train is on. The distribution of GPS data is further

discussed and illustrated in: subsubsection 6.2.2.1.

For this project it was sent wrapped in standard ETCS messages,

using packet 44, which is reserved for applications outside of normal

ERTMS/ETCS operation.

6.3.0.4 Static network layout

The static track layout information was provided in LDL format.

The network map is static data loaded once and not changed. This

network map was obtained in layout description language (LDL)

format. LDL Format is a proprietary standard used internally within

Siemens to describe the rail network, including all the infrastructure

positioned on the network. The information is stored in a human

readable and editable form, though tools to edit and display it exist

and were used in this project. LDL files list first the most basic infra-

structure, track, which is described as a series of nodes and edges,

then the positions of increasing complex elements are overlaid, us-

ing a node and offset location system. This “Node - Edge” way of

6.4 role of ontology 121

modelling the rail network sits well with the ontology, which also

represents the network as a series of nodes and edges, though these

are not the same as the nodes and edges that constitute the ontology.

Tutcher (2015a) sets out the rational behind the modelling.

6.3.0.5 Additional datasources

Beyond the datasources listed above it would also be possible to use

the following data sources, though they were not fully implemented

in the demonstrators produced:

train movements feed This is another open data feed provided

by Network Rail;

vstp - very short term plan This data feed gives details of trains

scheduled at short notice;

other signalling systems In particular direct connection to the

train describer system (not via the webservices) was suggested

for the final implementation of this project;

gps data from the rear of the train This would make it pos-

sible to provide accurate train integrity information, as required

if implementing ETCS.

6.4 role of ontology

In the compass demonstrators the primary role of the ontologies is

as the basis for data integration across diverse datasources. There are

many data sources for this system and it is one of this project’s ob-

jectives to show that the project partners could work with data from

a multitude of heterogeneous sources, not limited to those included

in the initial design.

6.5 demonstrator implementation 122

Ontology is also used for classification in this project, for example

for the classification of nodes, which are classified by sub-type. Nodes

can be any of the many types of object located on the track such as:

simple nodes, points nodes or signals. Most significantly they can be

the signals that mark the start of the area of interest; this information

is used to determine when to trigger degraded mode operation.

6.5 demonstrator implementation

In order as to provide the demonstrations outlined in subsection 6.2.1

a system was implemented, consisting of sub-systems from all the

industrial partners. In moving to production the simulation would no

longer be required whilst certification would be, however, the system

is designed such that certification should be obtainable.

6.5.1 Demonstrator One

6.5.1.1 Overview

The first demonstrator, that which sought to show the system under

normal operation or within its “Quiescent stated”, aims to show that

using the Network Rail data feeds, it is possible to track the location

of multiple trains on the network. Physically this is presented as a

geographical map showing the train line on which the capability is

being demonstrated with labels showing the current location of run-

ning trains. The map is presented in Figure 6.4. As the train steps to

a new berth, so these labels move, with the same granularity as is

provided by the signalling system. Running on a physically separate

system (though this is not required from a performance perspective)

a client written specifically for this task displays the messages in a

human readable format, as shown in Figure 6.5. The ontology holds

6.5 demonstrator implementation 123

position data for certain signals on the track in the area on which

the system was being demonstrated, these are returned to the map

via the tool. Where data is not available the ontology returns nothing

and thus no message is sent to display system. In this case display

is provided by the centre’s own simulator, BRaVE, which was being

used solely for display purposes.

6.5.1.2 Model Changes

This demonstrator made significant use of geographical data, Tutcher

(2015a) gave a number of suggestions as to how geographic data be

handled, in particular it recommended the use of the “W3C Basic Geo

Vocabulary”4, alongside the RaCoOn u:location class. This recom-

mendation was followed and geographical locations were encoded

using that schema.

Elements relating only to this project, all of which extended ele-

ments from the existing ontology, where placed in an application on-

tology design specifically for the COMPASS project, shared between

both demonstrators. As per the guidelines set out in chapter 4 this

was the lowest level at which it was appropriate to model the con-

cepts and avoided adding unnecessary complexity to those modules

shared throughout the domain.

6.5.1.3 Advantages of this approach

The most widely discussed advantage of this approach, that is the

use of ontology for data integration as opposed to constructing case

by case integrations, is that of ease of adding further data sources

without alteration to the existing system. The separation of business

logic, which can be moved to the ontology, how one decides where

the area of interest is for example in this case, also makes for more

maintainable and resilient systems.

4 Lieberman, Singh and Goad, 2007

6.5 demonstrator implementation 124

Fi
gu

re
6

.4
:R

ea
lt

im
e

Tr
ai

n
Po

si
ti

on
vi

a
BR

aV
E

(W
en

et
al

.,
2

0
1

5
).

Th
e

ve
hi

cl
e

po
si

ti
on

is
sh

ow
n

by
th

e
cy

an
la

be
l.

6.5 demonstrator implementation 125

Figure 6.5: The first Demonstrator in use

6.5.1.4 Implementation

In the first demonstrator the ontology is used to match signal berths

to their physical locations. A SPARQL query shown in Listing 6.1 is

used with the signal’s identifier to retrieve its location. This query is

triggered by the arrival of a berth step message from the Network

Rail train describer feed then, if found, the resulting latitude and lon-

gitude are first converted to British national grid coordinates, before

being sent onwards to BRaVE for display.

6.5 demonstrator implementation 126

Listing 6.1: SPARQL to select a signal location from its identifier. Note some
of the features here are Stardog specific, in particular the passing
in of the @sigid parameter

SELECT ?lat ?long
WHERE {

?Signal a <http://purl.org/rail/core/Signal> .
?Signal dc:identifier ?ident .
FILTER(regex(?ident, @sigid)) .
?Signal core:relativePosition ?signalPos .
?signalPos u:measurementValue ?offsetVal .
?signalPos core:locatedOn ?track .
?savedPos core:locatedOn ?track .
?savedPos a geo:Feature .
?savedPos wgspos:lat ?lat .
?savedPos wgspos:long ?long .
?savedPos core:hasOffsetLocation ?savedOffset .
?savedOffset u:measurementValue ?savedOffsetVal .
FILTER(?savedOffsetVal = ?offsetVal)

}

The data flows within this demonstrator are set out in Figure 6.6,

which shows that much of the system remains inactive in this scen-

ario, as much of the system is dedicated to managing the train

through areas of failed signalling.

6.5 demonstrator implementation 127

Simulated Train
Posi�ons

Network Layout

Ontology
Diverse Monitor

and Control

PCIDR Radio Block Control

Sta�c Data, via LDL file

GPS encapsulated

in ETCS Messages over IP

Virtual Line Side
Signalling

Front Cab Rear Cab

Proprietary System
(Key to decrypt an image to display)

Proprietary System

(Key to decrypt an image to display)

RS232 – (Simulated)

GPS distribu�on

ETCS Messages

RS232 – (Simulated)

 GPS distribu�on

ETCS Message
Service

RaCoOn
Middleware

ETCS Messages

WebService Calls
(XML)

SPARQL

Network Rail Data
Feeds

Train Posi�on
Display

Proprietary
UDP format

Calls to webservice

Network Rail
Datafeed Client

Calls to webservice

Proprietary

UDP format

Figure 6.6: Demonstrator One Data-flows
Objects and data-flows shown in grey are connected but inactive

A modular architecture was employed in both demonstrators to al-

low the reuse of components and to ensure separation between func-

tionally distinct units. The first demonstrator comprised the following

modules:

6.5 demonstrator implementation 128

MiddlewareConnectivity

This was compiled as a DLL and used in both the client to receive

‘Berth Step’ messages from Network Rail, as used in the first demon-

strator, and the tool for receiving ETCS messages used to demonstrate

the second scenario. This module provided a range of functions for

interacting with the RaCoOn middleware and thus the ontologies and

REDIS. For reasons of development time some SPARQL was embed-

ded in this module rather than being encoded as rules in the ontology.

Embedding SPARQL does mean that a certain amount of the process

and decision making embedded in the software rather being abstrac-

ted to the ontology, however all of the classification remained within

the ontology.

The middleware connectivity module handles the security process

used by the middleware, holding the token and renewing it when it

expires. For the purposes of demonstration the username and pass-

word were hard coded, though were this system deployed in a live

environment they would be supplied by the user. A credential storage

mechanism, is provided in readiness for moving over to that imple-

mentation.

A class is provided which lists the URI’s used throughout the sys-

tem as constants to avoid both ambiguity and the need to type URI’s

each time they are referenced. Whilst packages exist to auto create

this for JAVA nothing was available and compatible with stardog via

C#. This class makes the URI’s available both as strings and, where

appropriate, as C# URIs, so as to alleviate the need to constantly cre-

ate new URIs, this is both more convenient and efficient. Other classes

provide constants for other purposes:

• Locations of webservices

• ETCS Messages Numbers

6.5 demonstrator implementation 129

The middleware connectivity module abstracts the ontology cent-

ric triples view of the world into C# objects and handles the de-

tails of contacting the correct webservice. To this end two objects are

provided: one representing a triple and another a node; these in turn

hold methods for representing their contents as SPARQL, for the pur-

poses of building queries. It was found, by experimentation, to be

far quicker hold this representation of objects in memory then do

the conversion to SPARQL and run the query via dotNETRDF than

it was to use dotNETRDF’s inbuilt graph to SPARQL engine. The

design choices of dotNetRDFs in built graph mechanism (allowing

rich query answering at the expense of a larger memory and pro-

cessing footprint) as noted in chapter 4, made inserting objects dir-

ectly in the triplestore the natural choice. It was also found, again

by experimentation, that since by design stardog performs reasoning

whenever new data is inserted it is necessary to group records to-

gether and perform fewer large inserts rather than many small inserts.

This too is handled in middleware connectivity. All data to be inser-

ted in the triple store implements an interface, IConvertToTriples,

following the C# naming convention of naming interfaces with a cap-

ital ‘’I’, which enables other functions to iterate through all data to

be inserted, regardless of type. Parsing to and from XML data is also

handled within this module.

TrustMovements

This module, compiled as Windows Presentation Foundation (here

on WPF) application contains the logic specific to the first demon-

strator, including the connection to the train describer webservice,

which is implemented as a singleton. The rest of this module broadly

follows the ‘Model - View - View Model’ pattern, as is common prac-

tice with applications implemented in WPF. As you would expect

with an MVVM application the GUI is defined in XAML with very

6.5 demonstrator implementation 130

little code behind. The train describer feed is provided using the

“STOMP” protocol and the following stomp-client was used to access

it: (https://github.com/openraildata/stomp-client-dotnet), which in

turn uses the Apache NMS (.Net Message Service) 5. The Apache

NMS libraries were obtained using the .Net library management ser-

vice, NuGet.

The view model class, as is normal in this architecture, formats the

messages retrieved in order as to display them, presenting them to

the view as properties and implementing the

INotifyPropertyChanged interface to notify the view of new values.

A controller class is used, slightly unusually for this architecture; this

handles the threading and timing details, alongside checking with the

ontology (via racoonmiddleware) if there is position data available for

a given train movement. In this demonstrator one thread was used

to connect to the webservices, a process which is subject to delay,

another to obtain a position from the ontology (also subject to some

delay) whilst the GUI was on another separate thread.

BraveConnectivity

This was compiled as a DLL and because of the modular architecture

employed it was possible to reuse this module in the ETCS Message

Service, which was required for the second scenario.

The module implements the singleton design pattern, to ensure

only one connection with BRaVE will ever be made at any given point

in time, in turn ensuring that resources are correctly freed when the

system is shut-down and making it clear to others who use this mod-

ule that only one instance will be required. This module has functions

to convert WGS84 coordinates to those used in BRaVE; OSB36. Bey-

ond this it also serializes the data to the format used by brave (XML)

using an agreed specification.

5 available from: http://activemq.apache.org/nms/

(
http://activemq.apache.org/nms/

6.5 demonstrator implementation 131

For data integration the existing Rail Core Ontology was used then

another smaller application ontology was created to model the data

used in this project. A mapping was made to the RaCoOn and thus it

was possible to integrate data from other sources. One contribution

this could make, though it was not fully implemented in the demon-

strator, is the integration of schedule data, already available to the on-

tology, and train describer level train location data which was made

available to the ontologies as part of this project. The decision not

to implement was taken based on the complexity of matching routes

across the network to information in the schedule and the limitations

of the project time scale.

6.5.1.5 Outcome of demonstration

The system worked as expected and was demonstrated to the client,

who indicated it would be possible to proceed to the next round of

the tendering process. Videos of the two demonstrators in operation

are available from: http://morrisdigital.co.uk/video/.

When this system was demonstrated to the client this system oper-

ated for a period of ten minutes and displayed the location of three

trains, each of which moved multiple times.

Aside from the commercial goals of the project partners this pro-

ject also made it possible to investigate the use of ontology on a na-

tional scale; the Network Rail train describer feed sends a message for

every single ‘Berth Step’, that is movement between signalling births

of a train in the UK rail network, which at busy periods can easily

reach hundreds of messages a minute. These messages each trigger

a SPARQL query to ascertain whether they are within the area of

interest being shown by the demonstrator. This was done success-

fully, including use of property chains, without placing any signific-

ant strain on the data store, which was hosted on a desktop PC.

http://morrisdigital.co.uk/video/

6.5 demonstrator implementation 132

6.5.2 Demonstrator Two

6.5.2.1 overview

The second demonstrator aimed to show that it was possible to detect

an approaching train and signal it through an area in which the main

signalling system was not functioning. For this demonstrator it was

not possible, for reasons of both cost and safety, to use the live rail-

way, instead a simulator was used, in this case RETS. RETS is a rail

network simulator used by the project’s commercial partner, capable

of micro level simulation and of outputting absolute positions, where

it has the necessary data. A part of the UK rail infrastructure was sim-

ulated, since an accurate (and verified, though outside of this project)

model of that infrastructure was available, which was required.

Three scenarios were demonstrated.

• First a train moves across the simulator network area under

normal signalling. Its progress is displayed on the a map. This

demonstrates that the system can communicate internally, from

the simulator to the ontology then onto the display. It further

shows that the system can track the approaching train. This is

shown in Figure 6.7.

• In the next scenario the train drives into an area, then the sig-

nalling fails and the alternative system, known as STiR is ac-

tivated. The driver is instructed, via the in cab signalling, to

drive out of the area of failed signalling then to obey normal

signalling once the train is clear. This is shown in Figure 6.8.

• In the final scenario an area of signal has failed, a train ap-

proaches, is switched to STiR control and leaves. This is re-

peated with a second train. This is shown in Figure 6.9.

6.5 demonstrator implementation 133

Figure 6.7: Demonstrator Two - Stage One

Figure 6.8: Demonstrator Two - Stage Two

Figure 6.9: Demonstrator Two - Stage Three

6.5.2.2 Communications Implementation

The layout of the RS232 bus is illustrated in Figure 6.10, which is

used only to disseminate GPS. Whilst for the demonstrator the front

and rear cabs were connected via RS232 in reality this would not be

possible, however, it is envisaged that when implemented the system

would use a GPS receiver in each cab, which would output its pos-

ition via RS232. The simulator would not then be needed, the GPS

from the train would be sent via radio link to the VLS track-side com-

ponent and from that via ETCS messages over IP on to the operations

centre.

6.5 demonstrator implementation 134

All Subsystems also communicated over via Ethernet, either via the

local loopback interface when multiple subsystems where hosted on

the same machine or via a gigabit Ethernet switch.

Simulator
RETS

Train Bourne

Operations Centre

R
S2

3
2

Front Cab

Rear Cab

Diverse
Monitor

and Control

RaCoOn
Messaging

system

RS232 to IP
encapsulation

Figure 6.10: RS232 Bus.
Note that RETS is the train simulator which is the only trans-
mitter on the bus.

6.5.2.3 Demonstrator Outcomes

The second demonstrator, as with the first, performed flawlessly

upon the clients inspection. This demonstrator also helped invest-

igate the effect upon development time of middleware between the

ontology and the client. In particular it made it possible to observe the

effect of centralising functionality in the middleware and the extent

to which ontology specialists would be required in such a project.

A service was required to get from data sent as an ETCS message to

insertion in the ontology, as it would be for most new formats when

they are first encountered. This service acted a ‘Translator’ between

ETCS messages and the ontology middleware, which executed ap-

propriate queries in response to any given message. For technical

reasons integrating this functionally into the middleware would be

6.6 conclusions 135

challenging, however, from a performance perspective this architec-

ture makes it possible to host the different components on different

systems if required.

6.6 conclusions

6.6.1 Benefits of Ontology

The ontology and the surrounding tools allowed for significant de-

crease in the amount of time taken to integrate the various data-

sources required by the project into a coherent system.

An interview was conducted with a senior engineer from one of

the industrial partners, namely Lucas Redding from Siemens. In that

interview Lucas stated that it would require significantly more time

and expense to develop the system without the ontology than it did

with. Furthermore it would have been necessary to decide at the out-

set of the project which data sources to use and contract external

experts to integrate them with the system, since those skills were not

available in house. Whilst it is the case that is necessary to write ad-

apters to new data-sources for inserting data to the ontology it was

agreed, again by Lucas Redding, that significantly less development

effort would be required. Had further data sources become available

after the initial design it would not have been possible to add them

with out significant redevelopment. This interview further illustrated

the shortage of skilled personnel within the rail domain, proving the

need for solutions to help the rail domain transition to ontology with

few skilled personnel.

Another key advantage of using the ontology on this project was

that data previously made available to the ontology could be reused.

Mapping schedule data to the ontology had already been partially

6.6 conclusions 136

completed, so it was possible to simply complete the mapping and

use the existing work. Had this been done to a proprietary format that

work would almost certainly have been of no value to this or other

future projects. Going forward the mapping from the train describer

feed will be available for use in other projects, as will the schedule

mapping.

The existing RaCoOn ontologies provided a model of the domain,

what would be referred to a “Global Schema” by Lenzerini (2002). A

mapping was made between the data sources and RaCoOn, which

resided in a separate ontology and file. This is available via github.

6.6.2 Role of tools to connect to the ontology

As with data, re-usability was also seen with tools, such as the mid-

dleware, which made connection to the ontologies and the triplestore

that hosts them possible. Without the middleware it would have been

necessary to handle the connection to the datastores as part of this

project, which would have added significant development time. The

same is true of the tool to parse the schedules in CIF format, discussed

in chapter 4, had that tool not been available it would have been ne-

cessary to create such a tool from scratch, significantly impacting the

projects time line.

Without the middleware it would have been necessary to imple-

ment much of the functionality contained in the middleware, in par-

ticular that relating to querying the datastore. The project would then

be tied to using the chosen datastore and unable to change as new the

industry developed.

6.6 conclusions 137

6.6.3 Questions Answered

This project allowed us to address the following questions:

Given the diverse information environment within the rail industry, how can

heterogeneous datasources be combined, where there is value in so doing?

This project illustrated both how diverse the data environment can

be in the rail domain and how this presents a barrier to improved

performance. The datasources are largely in historic formats, devised

when a system was commissioned and where necessary encapsulated

in a more modern protocol. These encode in them a great deal of

knowledge as to how individual systems operate; for example the

“Berth Step” messages used in this project require an understanding

not just of railways in general, but signalling systems in particular in

order as to make them useful. This presents a problem using them

with systems that view the world differently; perhaps as maps which

are interested in absolute position, for people using modes of trans-

port other than the railway in order as to get to a station as opposed

to the network position view of signalling systems. Another problem

is that of the skill set required to work with the data, a developer

primarily experienced in creating usable mobile phone applications

would struggle to interpret the data correctly.

6.6 conclusions 138

Given the current shortage of engineers with experience editing or connect-

ing to ontologies, is it possible to create tools which improve their uptake and

adoption?

The middleware was used in this project, in part, to reduce the

amount of development time required, since this project was con-

ducted with only one ontology engineer and a condensed time-line.

The functionality already existing in the middleware was beneficial,

however, it was found that the project still required significant devel-

opment effort from an engineer with knowledge of ontologies and

software development; multiple man-months were required for the

development of the various systems connected. Further development

of the middleware will reduce this, however, this project provides no

evidence that it would be possible to connect external data sources to

the ontology with no ontology engineering experience.

The functionality within the middleware to handle connections to

the triplestore and act as an interface however alleviated the need to

develop this functionality specifically for this project. Where it was

necessary to extend the middleware those extensions in turn will be

beneficial to future projects.

It was discovered that the commercial partners do not have expert-

ise in this area, emphasising the need to provide solutions which do

not require large numbers of skilled engineers. The engineers from

the commercial partners all had very extensive experience of soft-

ware development (and all specialised in signalling systems) but as

was stated by Lucas Redding when interviewed they did not have

ontology experience within the company.

Beyond the question of interfacing with the ontology there is that

of extending the model. This project required the creation of a small

application ontology holding data pertinent only to this project, not

the broader signalling nor rail domains. That required an engineer

6.6 conclusions 139

with knowledge of ontology modelling, though in this case the de-

velopment time was far more limited; the concepts to model were

much simpler and most were already modelled in the ontology. As

with connecting the software to the ontology however, some extra

development will be required for most projects.

Can an intermediary layer isolate information systems from changes to data-

store interfaces?

The information systems in this project are now independent of the

datastore’s interface, were the datastore to change the interface it

presents that would require only a change to the middleware, as dis-

cussed in chapter 5.

This project served to highlight another unforeseen issue in terms

of protecting projects from a complete change of triple store, namely

that of differing feature sets.‘GEO-SPARQL’ was required in order as

to ascertain the distance between points and this is not supported by

all triple stores. As such, even with the middleware as an intermedi-

ary, it would still only be possible to swap Stardog for another triple

store which offered that support, without significant development ef-

fort.

Given the velocity and volume of data within the rail domain, can an onto-

logy based architecture be deployed on the scale of a national rail network?

The first demonstrator successfully handled signalling data at na-

tional scale. Data from conventional (fixed block) signalling systems

is, by the standards of modern computing, not truly high velocity and

could as such be handled by the triple store alone, with out needing

to resort key value stores.

6.7 further work 140

6.7 further work

It would be beneficial to move functionally embedded in client ap-

plications to the ontology. In particular a number of rules and queries

which were for reasons of development time hard-coded should have

been represented as rules processed by the triple store. This would

remove the dependency on software engineers for editing that logic.

Whilst majority of the logic embedded in the client applications (as

SPARQL queries) could be moved to a stored procedure it must be

noted that the name of the stored procedure and the number of para-

meters it takes would need to remain embedded in the client applic-

ation. The stored procedures themselves could however be kept very

small if most of the logic represented in SPARQL were moved to the

ontology as rules.

6.7.1 Changing triple store

There are several barriers to replacing the triple store, should that

be desired. Firstly another triple store which supports GeoSPARQL

would need to be selected. This is possible, but limits the selec-

tion. Secondly the SPARQL queries currently rely upon the Stardog

specific method for passing parameters. These parameters need to

passed into the query, however the middleware can determine how

this is done, thus were an appropriate connector written for the mid-

dleware no changes need be made to the client software.

7
C O N C L U S I O N S A N D F U RT H E R W O R K

The information environment within the rail industry is very diverse,

with a range of heterogeneous systems of differing ages and signific-

ant scope for improved integration. The literature review (chapter 2)

identified the benefits available to many stakeholders from improved

data integration, such as reduced costs thanks to the removal of bar-

riers to data integration.

The COMPASS project, discussed in chapter 6, showed that one

of the barriers was a shortage of software engineers with ontology

engineering experience and showed one way in which that barrier

could be overcome. Another barrier identified was the integration

of data sources available in one the proprietary formats typical of

the rail domain; the schedule parsing tool, discussed in Chapter 4,

demonstrated the feasibility of making such data available in a linked

format suitable for integration. The schedule parsing tool, alongside

the middleware considered in chapter 5 was reused as part of the

COMPASS project demonstrating how ontology can serve to unlock

value for many projects across the industry.

This chapter will now examine the questions identified in the prob-

lem statement (chapter 3).

7.1 response to research questions

• Given the diverse information environment within the rail

industry, how can heterogeneous datasources be combined,

where there is value in so doing?

141

7.1 response to research questions 142

• Given the current shortage of engineers with experience editing

or connecting to ontologies, is it possible to create tools which

improve their uptake and adoption?

• Given that many stakeholders can benefit from combining mul-

tiple data sources, what techniques enable this?

• Can an intermediary layer isolate information systems from

changes to datastore interfaces?

• Given the velocity and volume of data within the rail domain,

can an ontology based architecture be deployed on the scale of

a national rail network?

• How can datastore security be managed within the setting of

an ontology and IT infrastructure?

Considering each of these questions in turn:

7.1.1 Given the diverse information environment within the rail industry,

how can heterogeneous datasources be combined, where there is value

in so doing?

Excluding data held in relational databases, many railway data-

sources are held in proprietary formats, often structured based not

on the data they represent, but on the system which generated them.

As was shown by the reuse of data from the schedule parsing tool

in the COMPASS project, ontology provides a method of integrating

data across different systems, constructed by different suppliers for

different purposes. Even where two systems operate very differently

it is possible to map data from both to a single ontology and thus the

data may then be used by either; for example signalling systems are

primarily concerned with passenger safety, whilst journey planning

7.1 response to research questions 143

applications need to know how the railway can help transport a per-

son from one place to another at a given time and have no interest in

other details.

In chapter 4 the processing of static data is considered, taking as an

example schedule data which is updated on a weekly basis. The con-

struction of a tool which takes the flat datafile containing the sched-

ules and makes this available as RDF, which could then be inserted in

the ontology, allows for the reuse of schedules in any project which

uses ontology as a datasource. Another project COMPASS, reported

in chapter 6, could use imported schedule data in conjunction with

other data sources to build a picture of train movements helps demon-

strate the utility of ontology as a means of data integration.

Developing custom tools to process data requires more develop-

ment time, and hence expense, than using commercial off the shelf

software, where it is available, however, much data in the rail industry

is held in proprietary formats for which no processing tools are avail-

able. Taking proprietary datasources and making them available in a

linked format requires both some understanding of the data sources

and of the linked format in which it is to be made available; as such

this task requires software engineers with, at the very least, some

understanding of the rail domain and of ontology.

In summary it is possible to make typical railway datasources avail-

able to the ontology and this enables improved data integration.

7.1.2 Given the current shortage of engineers with experience editing or

connecting to ontologies, is it possible to create tools which improve

their uptake and adoption?

This project showed that whilst it is possible to reduce the amount

of input required from ontology designers and software engineers

7.1 response to research questions 144

with ontology engineering experience, however there is no evidence

that it is possible to remove that input entirely. A service logically situ-

ated between the triple store and the client application can reduce the

amount of development time needed to add new interfaces or data-

sources to the ontology, by allowing software engineers to interact

with familiar webservices and alleviating the need to learn ontology

specific technologies, such as SPARQL. Where the middleware offers

all the services required to interface with a given system, it should

be possible to add that interface without any knowledge of ontology

technologies. In this project it was however found that the systems

requiring integration were of sufficient complexity as to require ex-

tension of the middleware and knowledge of ontology techniques to

achieve integration. If the middleware layer had more functionality,

and if the same middleware was used for multiple projects, then each

progressive project would need less and less intervention from soft-

ware engineers with ontology engineering experience.

The tool presented in section 4.6 presents a way of allowing un-

skilled users to add items to the ontology. This tool is useful for mak-

ing small alterations, where the data has been modelled previously.

7.1.3 Given that many stakeholders can benefit from combining multiple

data sources, what techniques enable this?

The implementation of a middleware layer, discussed in chapter 5,

demonstrates one way multiple data stores of different types can be

combined. One central point, the middleware, has connections to two

different datastores (easily and indefinitely expansible to any number

of datastores) and potentially any number of clients. Webservices in-

cluded in the middleware have access to all the connected data stores;

there for it would possible to implement a single webservice which

7.1 response to research questions 145

either summarised data in one datastore and stored the full data in

another, or which stored only the most recent value in one store and

historic data in another. Were data of too high a volume or velocity

for ontology storage encountered it would be possible to use either

of these techniques to allow as much reasoning as possible, whilst

retaining fine grained data for more detailed analysis.

7.1.4 Can an intermediary layer isolate information systems from changes

to datastore interfaces?

An intermediary layer between the triple store and client applications

can isolate client applications from change, with one caveat: if fea-

tures specific to a given triple store are used then only other stores

supporting that same feature may be used. This was demonstrated

in chapter 6 where the addition of GEO-SPARQL tied that project to

triple stores with that feature.

7.1.5 Given the velocity and volume of data within the rail domain, can an

ontology based architecture be deployed on the scale of a national rail

network?

National scale data from the UK rail industry was used both to test

the schedule import tool described in chapter 4 and to demonstrate

the capabilities of the COMPASS system discussed in chapter 6. In the

first case, the volume of data that needed to be processed presented a

challenge which required significant optimisation; when that optim-

isation was carried out, it was possible to process the schedule data

in a reasonable time period and make it available to the ontology.

In the second case, the COMPASS system used data from conven-

tional (fixed block) signalling systems to show train locations. This

7.2 further work 146

data was provided for the entire country, but by the standards of

modern computing, this data is not very high velocity and could as

such be handled by the triple store alone. A query was performed

each time a train movement was detected including (when a location

was found to be in the triplestore), a geographical lookup and the

system still performed well.

7.1.6 How can datastore security be managed within the setting of an on-

tology and IT infrastructure?

The imposition of a secure middleware layer between unsecured data-

stores and the wider network can add security to those data stores

which lack it and simplify the management of those that have it. An

additional benefit of the middleware implemented as part of this pro-

ject is that it provides a single-sign on that can be used to access all

datastores, simplifying the credential management.

7.2 further work

As stated in the conclusion this study found no evidence that it is pos-

sible to use ontology for data integration without some limited input

from ontology engineers. Reducing that input further remains an out-

standing task. There are several approaches to this which need con-

sideration, alongside increasingly the supply of such skilled engin-

eers: firstly tools with simply user interfaces for allowing non-experts

to add items to the ontology should be considered, as should sys-

tems such as ‘Blockly’ for simplified development. These approaches

should be considered in tandem with making the Middleware more

capable and more widely available.

7.2 further work 147

Another area in which there is further work to do is scalability; this

thesis has shown some techniques for working with national scale

data but there is outstanding work to be done on high frequency

sensor data in particular. Techniques for summarising that data in

an ontology whilst working with the bulk of the data in another store

need further examination. Performance and benchmarking in general

is an area where work remains outstanding. In particular the perform-

ance of the middleware working with web-scale data and sharded

datastores would be of interest.

Part II

A P P E N D I X

Supplementary Data

A
A P P E N D I X A M A N U A L D ATA E N T RY T O O L G U I

The GUI used by the manual data entry tool.

As shown by Figure A.1 the user is first required to log on. Note

that for ease of use all details, except passwords, are stored on the

client machine, using cookies.

Figure A.1: Manual Data Entry tool welcome and login screens

149

A.1 add an item 150

If log-in is successful the user is presented with the main menu, as

shown in Figure A.2.

Figure A.2: Manual Data Entry Tool main menu

a.1 add an item

Figure A.3: Manual Data Entry tool Adding an item stage one

A.1 add an item 151

Figure A.4: Manual Data Entry tool Adding an item stage two

B
S T O R E D P R O C E D U R E

The below provides an abridged listing of the stored procedure im-

plementation used in the middleware.

Listing B.1: The StoredProcedure class. Constructors, private fields and util-

ity methods have been omitted for brevity.

public class StoredProcedure

{

private void createQuery()

{

lock (theQueryLock)

{

//Cause the exception to be thrown here if the

type doesn’t exist, for clarity sake.

Type queryType = Type.GetType(TypeOfQuerry, true)

;

TheQuerry = Activator.CreateInstance(queryType)

as IQuerry;

if (TheQuerry == null)

throw new InvalidOperationException("The

Query is not of a valid type");

TheQuerry.SetTarget(Server, DataStore);

TheQuerry.SetQuerry(StoredProcText);

}

}

/// <summary>

/// A hash of the storedproc name, used as a key to

retrieve it

152

stored procedure 153

/// </summary>

public int KeyHash;

/// <summary>

/// The executable version of the query

/// </summary>

[XmlIgnore]

public IQuerry TheQuerry

{

get

{

if (theQuery == null) createQuery();

return theQuery;

}

private set

{

theQuery = value;

}

}

/// <summary>

/// The server at which the stored proc is targeted.

Where this is null or empty the value from the

Session is used

/// </summary>

public string Server;

/// <summary>

/// The Datastore at which the stored proc is targeted.

Where this is null or empty the value from the

Session is used

/// </summary>

public string DataStore;

/// <summary>

/// The name of stored proc

stored procedure 154

/// </summary>

public string Name;

/// <summary>

/// This is the name of the type of query to instantiate

/// </summary>

public string TypeOfQuerry;

/// <summary>

/// The text of the command e.g. SELECT * WHERE {?s ?p ?o

}

/// </summary>

public string StoredProcText;

}

B I B L I O G R A P H Y

Baader, Franz et al. (2005). ‘Pushing the EL envelope’. In: 19th Joint Int.

Conf. on Artificial Intelligence (IJCAI 2005). isbn: 1466-609X (Elec-

tronic) 1364-8535 (Linking). doi: 10 . 1186 / cc9339. url: http :

//www.ncbi.nlm.nih.gov/pubmed/21144006http://ccforum.

biomedcentral.com/articles/10.1186/cc9339.

Bergquist, Bjarne and Peter Söderholm (2015). ‘Data Analysis for

Condition-Based Railway Infrastructure Maintenance’. In: Qual-

ity and Reliability Engineering International 31.5, pp. 773–781. issn:

10991638. doi: 10.1002/qre.1634. url: http://dx.doi.org/10.

1002/qre.1634.

Bhatti, Jabran et al. (2016). ‘A Scalable Software Framework for Real-

Time Data Processing in the Railway Environment’. In: Intelligent

Rail Transportation (ICIRT), 2016 IEEE International Conference on.

IEEE, pp. 170–176. isbn: 9781509015559.

Bloom Field, Robin et al. (2016). ‘The risk assessment of ERTMS-based

railway systems from a cyber security perspective: Methodology

and lessons learned’. In: Lecture Notes in Computer Science (includ-

ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics) 9707, pp. 3–19. issn: 16113349. doi: 10.1007/

978-3-319-33951-1_1.

Bodenreider, Olivier and Robert Stevens (2006). ‘Bio-ontologies: Cur-

rent trends and future directions’. In: Briefings in Bioinformatics

7.3, pp. 256–274. issn: 14675463. doi: 10.1093/bib/bbl027.

Chen, Binbin et al. (2015). ‘Security Analysis of Urban Railway Sys-

tems: The Need for a Cyber-Physical Perspective.’ In: SAFE-

155

https://doi.org/10.1186/cc9339
http://www.ncbi.nlm.nih.gov/pubmed/21144006 http://ccforum.biomedcentral.com/articles/10.1186/cc9339
http://www.ncbi.nlm.nih.gov/pubmed/21144006 http://ccforum.biomedcentral.com/articles/10.1186/cc9339
http://www.ncbi.nlm.nih.gov/pubmed/21144006 http://ccforum.biomedcentral.com/articles/10.1186/cc9339
https://doi.org/10.1002/qre.1634
http://dx.doi.org/10.1002/qre.1634
http://dx.doi.org/10.1002/qre.1634
https://doi.org/10.1007/978-3-319-33951-1_1
https://doi.org/10.1007/978-3-319-33951-1_1
https://doi.org/10.1093/bib/bbl027

Bibliography 156

COMP Workshops 9338, pp. 277–290. url: http : / / dblp . uni -

trier.de/db/conf/safecomp/safecomp2015w.html{\#}ChenSMTDJS15.

Chute, Christopher G. (2000). ‘Clinical Classification and Termino-

logy’. In: Journal of the American Medical Informatics Association 7.3,

pp. 298–303. issn: 1067-5027. doi: 10.1136/jamia.2000.0070298.

Colpaert, Pieter et al. (2015). ‘Intermodal public transit routing us-

ing Linked Connections’. In: International Semantic Web Conference,

pp. 5–8.

Council of the European Union (2008). DIRECTIVE 2008/57/EC OF

THE EUROPEAN PARLIAMENT AND OF THE COUNCIL.

Department for Transport (2011). Realising the potential of GB rail.

Tech. rep. May 2011, p. 320. url: http : / / www . dft . gov . uk /

publications/realising-the-potential-of-gb-rail/.

— (2016). ‘Rail Cyber Security Guidance to Industry’. In: February.

Dimou, Anastasia et al. (2014). ‘RML: A generic language for integ-

rated RDF mappings of heterogeneous data’. In: CEUR Workshop

Proceedings 1184. issn: 16130073.

ERTMS Solutions (2017). SNCB chose Goal Systems for their Advanced

Planning System and ERTMS Solutions’ Ontologies for system integra-

tion. url: https://www.ertmssolutions.com/news/sncb-chose-

goal-systems-advanced-planning-system-ertms-solutions-

ontologies-systems-integration/ (visited on 19/10/2017).

Easton, John et al. (2013). Ontime - Part D7.1. Tech. rep.

Eriksen, A et al. (2004). ‘Improved productivity & reliability of ballast

inspection using road-rail multi-channel GPR’. In: Railway Engin-

eering.

European Commission (2011). ‘White Paper - Roadmap to a Single

European Transport Area – Towards a competitive and resource

efficient transport system’. In: p. 170. issn: 1098-6596. doi: http:

/ / ec . europa . eu / transport / strategies / doc / 2011 _ white _

http://dblp.uni-trier.de/db/conf/safecomp/safecomp2015w.html{\#}ChenSMTDJS15
http://dblp.uni-trier.de/db/conf/safecomp/safecomp2015w.html{\#}ChenSMTDJS15
https://doi.org/10.1136/jamia.2000.0070298
http://www.dft.gov.uk/publications/realising-the-potential-of-gb-rail/
http://www.dft.gov.uk/publications/realising-the-potential-of-gb-rail/
https://www.ertmssolutions.com/news/sncb-chose-goal-systems-advanced-planning-system-ertms-solutions-ontologies-systems-integration/
https://www.ertmssolutions.com/news/sncb-chose-goal-systems-advanced-planning-system-ertms-solutions-ontologies-systems-integration/
https://www.ertmssolutions.com/news/sncb-chose-goal-systems-advanced-planning-system-ertms-solutions-ontologies-systems-integration/
https://doi.org/http://ec.europa.eu/transport/strategies/doc/2011_white_paper/white_paper_2011_ia_full_en.pdf
https://doi.org/http://ec.europa.eu/transport/strategies/doc/2011_white_paper/white_paper_2011_ia_full_en.pdf
https://doi.org/http://ec.europa.eu/transport/strategies/doc/2011_white_paper/white_paper_2011_ia_full_en.pdf

Bibliography 157

paper/white_paper_2011_ia_full_en.pdf. arXiv: arXiv:1011.

1669v3.

Frémont, J. et al. (2008). ‘International Electrotechnical Commission

—Common Information Model (CIM) Enabling Smart Grid Inter-

operability’.

Gallaher, Michael P et al. (2004). ‘Cost Analysis of Inadequate Inter-

operability in the U.S. Capital Facilities Industry’. In: National

Institute of Standards & Technology, pp. 1–210. issn: <null>. doi:

10.6028/NIST.GCR.04-867. url: papers2://publication/uuid/

69C8B354-4830-4874-929E-ACBCC00E3204.

Gamma, Erich et al. (1994). Design Patterns – Elements of Reusable

Object-Oriented Software, p. 334. isbn: 9780201715941. doi: 10 .

1093/carcin/bgs084. arXiv: dd.

Genesereth, Michael R and Nils J Nilsson (1987). Logical Foundations

of Artificial Intelligence. doi: 10.2307/2274491. url: http://www.

loc.gov/catdir/description/els032/87005461.html.

Gogos, Stefanos and Xavier Letellier (2016). ‘IT2Rail: Information

Technologies for Shift to Rail’. In: Transportation Research Procedia

14, pp. 3218–3227. issn: 23521465. doi: 10.1016/j.trpro.2016.

05.265.

Gönczy, László et al. (2012). e-Freight ontology. Tech. rep. 233758. url:

http://www.efreightproject.eu/uploadfiles/e-FreightD2.

3e-FreightOntology.pdf.

Grenon, Pierre et al. (2004). ‘Biodynamic ontology: applying BFO in

the biomedical domain.’ In: Studies in health technology and inform-

atics 102.ii, pp. 20–38. issn: 0926-9630. url: http://www.ncbi.nlm.

nih.gov/pubmed/15853262.

Groß, Anika et al. (2016). ‘Evolution of biomedical ontologies and

mappings: Overview of recent approaches’. In: Computational and

Structural Biotechnology Journal 14, pp. 333–340. issn: 20010370.

https://doi.org/http://ec.europa.eu/transport/strategies/doc/2011_white_paper/white_paper_2011_ia_full_en.pdf
https://doi.org/http://ec.europa.eu/transport/strategies/doc/2011_white_paper/white_paper_2011_ia_full_en.pdf
http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.6028/NIST.GCR.04-867
papers2://publication/uuid/69C8B354-4830-4874-929E-ACBCC00E3204
papers2://publication/uuid/69C8B354-4830-4874-929E-ACBCC00E3204
https://doi.org/10.1093/carcin/bgs084
https://doi.org/10.1093/carcin/bgs084
http://arxiv.org/abs/dd
https://doi.org/10.2307/2274491
http://www.loc.gov/catdir/description/els032/87005461.html
http://www.loc.gov/catdir/description/els032/87005461.html
https://doi.org/10.1016/j.trpro.2016.05.265
https://doi.org/10.1016/j.trpro.2016.05.265
http://www.efreightproject.eu/uploadfiles/e-Freight D2.3 e-Freight Ontology.pdf
http://www.efreightproject.eu/uploadfiles/e-Freight D2.3 e-Freight Ontology.pdf
http://www.ncbi.nlm.nih.gov/pubmed/15853262
http://www.ncbi.nlm.nih.gov/pubmed/15853262

Bibliography 158

doi: 10.1016/j.csbj.2016.08.002. url: http://dx.doi.org/10.

1016/j.csbj.2016.08.002.

Gruber, T (2009a). ‘Ontology’. In: Encyclopedia of Database Systems.

Gruber, Thomas R (1993). ‘A translation approach to portable onto-

logy specifications’. In: Knowledge acquisition 5.2, pp. 199–220.

Gruber, Tom (2009b). ‘Siri a virtual Personal assistant: Bringing In-

telligence to the Interface’. In: Semantic Technologies 2009. issn:

10755470. url: http://www.macrumors.com/2010/04/28/siri-

acquisition-brings-apple-much-closer-to-the-knowledge-

navigator-concept/.

Hargreaves, NB et al. (2013). ‘Foundations of a Metamodel Reposit-

ory for use with the IEC Common Information Model’. In: 28.4,

pp. 4752–4759. url: http://ieeexplore.ieee.org/xpls/abs{_

}all.jsp?arnumber=6555935.

Hicks, Peter. Open Rail Data wiki. url: http://nrodwiki.rockshore.

net/ (visited on 15/09/2017).

Horridge, Matthew et al. (2012). ‘Ontology Design Pattern Language

Expressivity Requirements’. In: Workshop on Ontology Patterns

(WOP) 929. issn: 16130073. url: http : / / ceur - ws . org / Vol -

929/paper3.pdf.

Horrocks, Ian (2006). ‘Hybrid Logics and Ontology Language’. In: the

international workshop on hybrid logic. Seattle.

— (2007). ‘Description Logic : A Formal Foundation for Ontology

Languages and Tools’. In: Methods In Cell Biology 78.0091-679X

(Print) LA - eng PT - Journal Article RN - 0 (Intermediate Fil-

ament Proteins) RN - 0 (Nerve Tissue Proteins) RN - 0 (Sulfur

Radioisotopes) RN - 63-68-3 (Methionine) SB - IM, pp. 765–775.

Horrocks, Ian et al. (2006). ‘The Even More Irresistible SROIQ’. In:

Proc. of the 10th Int. Conf. on Principles of Knowledge Representation

and Reasoning (KR2006), pp. 57–67. url: http://www.cs.man.ac.

uk/{~}horrocks/Publications/download/2006/HoKS06a.pdf.

https://doi.org/10.1016/j.csbj.2016.08.002
http://dx.doi.org/10.1016/j.csbj.2016.08.002
http://dx.doi.org/10.1016/j.csbj.2016.08.002
http://www.macrumors.com/2010/04/28/siri-acquisition-brings-apple-much-closer-to-the-knowledge-navigator-concept/
http://www.macrumors.com/2010/04/28/siri-acquisition-brings-apple-much-closer-to-the-knowledge-navigator-concept/
http://www.macrumors.com/2010/04/28/siri-acquisition-brings-apple-much-closer-to-the-knowledge-navigator-concept/
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=6555935
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=6555935
http://nrodwiki.rockshore.net/
http://nrodwiki.rockshore.net/
http://ceur-ws.org/Vol-929/paper3.pdf
http://ceur-ws.org/Vol-929/paper3.pdf
http://www.cs.man.ac.uk/{~}horrocks/Publications/download/2006/HoKS06a.pdf
http://www.cs.man.ac.uk/{~}horrocks/Publications/download/2006/HoKS06a.pdf

Bibliography 159

Janowicz, Krzysztof et al. (2012). ‘Geospatial semantics and linked

spatiotemporal data-past, present, and future’. In: Semantic Web

3.4, pp. 321–332. issn: 15700844. doi: 10.3233/SW-2012-0077.

Jovanović, Jelena and Ebrahim Bagheri (2017). ‘Semantic annotation

in biomedicine: the current landscape’. In: Journal of Biomedical

Semantics 8.1, p. 44. issn: 2041-1480. doi: 10 . 1186 / s13326 -

017- 0153- x. url: http://www.ncbi.nlm.nih.gov/pubmed/

28938912{\%}0Ahttp://jbiomedsem.biomedcentral.com/articles/

10.1186/s13326-017-0153-x.

Kim, Hyun Hee et al. (2004). ‘Implementing an ontology-based know-

ledge management system in the Korean financial firm environ-

ment’. In: Proceedings of the ASIST Annual Meeting 41, pp. 300–309.

issn: 15508390. doi: 10.1002/meet.1450410136.

Kobilarov, Georgi et al. (2009). ‘Media Meets Semantic Web – How

the BBC Uses DBpedia and Linked Data to Make Connections’.

In: Heraklion, Crete, Greece.

Köpf, Helene (2010). InteGrail – Publishable Final Activity Report. Tech.

rep.

Leal, David (2005). ‘ISO 15926 "Life cycle data for process plant": An

overview’. In: Oil and Gas Science and Technology 60.4, pp. 629–637.

issn: 12944475. doi: 10.2516/ogst:2005045.

Lenzerini, Maurizio (2002). ‘Data Integration: A Theoretical Perspect-

ive.’ In: Proc.\ of the 21st ACM SIGACT SIGMOD SIGART Symp.\

on Principles of Database Systems (PODS˜2002), pp. 233–246. url:

papers2 : / / publication / uuid / C8C9DF09 - 7385 - 4667 - 95B6 -

620C79A5FD12.

Lieberman, Joshua et al. (2007). W3C Geospatial Vocabulary. Tech. rep.

W3C Geospatial Incubator Group (GeoXG). url: https://www.

w3.org/2005/Incubator/geo/XGR-geo/.

Lorenz, Bernhard (2005). ‘Ontology of Transportation Networks’. In:

Framework.

https://doi.org/10.3233/SW-2012-0077
https://doi.org/10.1186/s13326-017-0153-x
https://doi.org/10.1186/s13326-017-0153-x
http://www.ncbi.nlm.nih.gov/pubmed/28938912{\%}0Ahttp://jbiomedsem.biomedcentral.com/articles/10.1186/s13326-017-0153-x
http://www.ncbi.nlm.nih.gov/pubmed/28938912{\%}0Ahttp://jbiomedsem.biomedcentral.com/articles/10.1186/s13326-017-0153-x
http://www.ncbi.nlm.nih.gov/pubmed/28938912{\%}0Ahttp://jbiomedsem.biomedcentral.com/articles/10.1186/s13326-017-0153-x
https://doi.org/10.1002/meet.1450410136
https://doi.org/10.2516/ogst:2005045
papers2://publication/uuid/C8C9DF09-7385-4667-95B6-620C79A5FD12
papers2://publication/uuid/C8C9DF09-7385-4667-95B6-620C79A5FD12
https://www.w3.org/2005/Incubator/geo/XGR-geo/
https://www.w3.org/2005/Incubator/geo/XGR-geo/

Bibliography 160

Martin, Robert C (2003). The Principles of OOD. url: http://butunclebob.

com/ArticleS.UncleBob.PrinciplesOfOod (visited on 01/09/2017).

May, Jiawei Wilson (2017). ‘Mapping Relational Databases to Onto-

logy Representation : A Review’. In: pp. 54–58.

Mazzola, Luca et al. (2016). ‘CDM-Core: A Manufacturing Domain

Ontology in OWL2 for Production and Maintenance’. In: Pro-

ceedings of the 8th International Joint Conference on Knowledge Dis-

covery, Knowledge Engineering and Knowledge Management 2.Ic3k,

pp. 136–143. doi: 10.5220/0006056301360143. url: http://www.

scitepress . org / DigitalLibrary / Link . aspx ? doi = 10 . 5220 /

0006056301360143.

Meyer, Thomas et al. (2006). ‘Finding Maximally Satisfiable Termino-

logies for the Description Logic \mathcal{ALC}’. In: 21st National

Conference on Artificial Intelligence, AAAI, pp. 269–274.

Microsoft (2012). The MVVM Pattern. url: https://msdn.microsoft.

com/en-gb/library/hh848246.aspx (visited on 24/08/2017).

Mikroyannidi, Eleni et al. (2016). ‘Use of Semantic Web Technologies

in the Architecture of the BBC Education Online Pages’. In: Open

Data for Education: Linked, Shared, and Reusable Data for Teaching

and Learning. Ed. by Dmitry Mouromtsev and Mathieu D’Aquin.

Cham: Springer International Publishing, pp. 67–85. isbn: 978-3-

319-30493-9. doi: 10.1007/978-3-319-30493-9_4. url: http:

//dx.doi.org/10.1007/978-3-319-30493-9{_}4.

Morris, Christopher et al. (2015). ‘Ontology in the Rail Domain: The

Railway Core Ontologies’. In: 7th International Joint Conference on

Knowledge Discovery, Knowledge Engineering and Knowledge Manage-

ment - IC3K 2015, pp. 285–290. isbn: 9789897581588. doi: 10.5220/

0005613702850290.

Morris, Christopher et al. (2014). ‘Applications of Linked Data in the

Rail Domain’. In: IEEE BigData 2014. Washington.

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
https://doi.org/10.5220/0006056301360143
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006056301360143
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006056301360143
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006056301360143
https://msdn.microsoft.com/en-gb/library/hh848246.aspx
https://msdn.microsoft.com/en-gb/library/hh848246.aspx
https://doi.org/10.1007/978-3-319-30493-9_4
http://dx.doi.org/10.1007/978-3-319-30493-9{_}4
http://dx.doi.org/10.1007/978-3-319-30493-9{_}4
https://doi.org/10.5220/0005613702850290
https://doi.org/10.5220/0005613702850290

Bibliography 161

Morris, Christopher et al. (2016). ‘From Data To Information: Provi-

sion of Railway Data To Passengers in the Information Age’. In:

WCRR2016.

Motik, Boris et al. (2012). OWL 2 Web Ontology Language - Structural

Specification and Functional-Style Syntax (Second Edition). {W3C} Re-

commendation December. W3C, pp. 1–133. doi: urn:nbn:nl:ui:

29-303961. url: https://www.w3.org/2007/OWL/draft/ED-owl2-

syntax-20090914/all.pdf.

Mueller, Andreas W and Joern Peschke (2015). ‘A View on Advanced

Standby Control in Industry from a Knowledge Engineering Per-

spective’. In: Proceedings of the 7th International Joint Conference on

Knowledge Discovery, Knowledge Engineering and Knowledge Manage-

ment (IC3K 2015) 2.KEOD, pp. 364–369.

Nash, Andrew et al. (2010). ‘RailML - A standard data interface for

railroad applications’. In: Timetable Planning and Information Qual-

ity, pp. 3–10. issn: 1462608X. doi: 10.2495/978-1-84564-500-

7/01.

Network Rail Infrastructure Ltd. ORBIS — Network Rail ’ s Offer-

ing Rail Better Information Services. url: http : / / www . theiet .

org/sectors/information-communications/topics/connected-

data/files/case-study-1.cfm?type=pdf (visited on 20/10/2017).

— (2007). Common Interface File Common Interface File - End User

Specification. Tech. rep. August. url: http : / / www . atoc . org /

clientfiles/files/RSPDocuments/20070801.pdf.

— (2017). Our information and data. url: https://www.networkrail.

co.uk/who-we-are/transparency-and-ethics/transparency/

datasets/.

Niles, Ian et al. (2001). ‘Towards a standard upper ontology’. In: Pro-

ceedings of the international conference on Formal Ontology in Informa-

tion Systems - FOIS ’01 2001, pp. 2–9. doi: 10.1145/505168.505170.

https://doi.org/urn:nbn:nl:ui:29-303961
https://doi.org/urn:nbn:nl:ui:29-303961
https://www.w3.org/2007/OWL/draft/ED-owl2-syntax-20090914/all.pdf
https://www.w3.org/2007/OWL/draft/ED-owl2-syntax-20090914/all.pdf
https://doi.org/10.2495/978-1-84564-500-7/01
https://doi.org/10.2495/978-1-84564-500-7/01
http://www.theiet.org/sectors/information-communications/topics/connected-data/files/case-study-1.cfm?type=pdf
http://www.theiet.org/sectors/information-communications/topics/connected-data/files/case-study-1.cfm?type=pdf
http://www.theiet.org/sectors/information-communications/topics/connected-data/files/case-study-1.cfm?type=pdf
http://www.atoc.org/clientfiles/files/RSPDocuments/20070801.pdf
http://www.atoc.org/clientfiles/files/RSPDocuments/20070801.pdf
https://www.networkrail.co.uk/who-we-are/transparency-and-ethics/transparency/datasets/
https://www.networkrail.co.uk/who-we-are/transparency-and-ethics/transparency/datasets/
https://www.networkrail.co.uk/who-we-are/transparency-and-ethics/transparency/datasets/
https://doi.org/10.1145/505168.505170

Bibliography 162

url: http : / / portal . acm . org / citation . cfm ? doid = 505168 .

505170.

Núñez, Alfredo et al. (2014). ‘Facilitating Maintenance Decisions on

the Dutch Railways Using Big Data : The ABA Case Study’. In:

Big Data (Big Data), 2014 IEEE International Conference on. Wash-

ington, DC, pp. 48–53. isbn: 9781479956661.

Office of Road & Rail (2016). ‘Passenger Rail Usage 2015-16 Q4 Stat-

istical Release’. In: May, p. 26. url: http://orr.gov.uk/{_

}{_}data/assets/pdf{_}file/0015/22056/passenger-rail-

usage-2015-16-q4.pdf.

POSC Caesar Association (2011). A Bit of History. url: https://www.

posccaesar.org/wiki/ISO15926Primer{_}ShortHistory (vis-

ited on 22/08/2017).

Paganelli, Paolo et al. (2009). The EURIDICE Project on Intelligent

Cargo for Efficient , Safe and Environment-friendly Logistics. url:

http : / / www . fhv . at / media / pdf / forschung / prozess - und -

produktengineering / projekte / euridice / euridice - white -

paper.

Parsia, Bijan et al. (2012a). {OWL} 2 Web Ontology Language Primer

(Second Edition). Tech. rep. W3C. url: https://www.w3.org/TR/

owl2-primer/.

Parsia, Bijan et al. (2012b). {OWL} 2 Web Ontology Language Structural

Specification and Functional-Style Syntax (Second Edition). W3C Re-

commendation. W3C. url: https : / / www . w3 . org / TR / owl2 -

syntax/.

Perry, Matthew and John Herring (2012). ‘OGC GeoSPARQL-A geo-

graphic query language for RDF data’. In: OGC Candidate Imple-

mentation Standard, p. 57. url: http://www.opengis.net/doc/IS/

geosparql/1.0.

Rail Delivery Group (2017). ‘Rail Technical Strategy- Capability De-

livery Plan’. In: url: https://www.rssb.co.uk/rts/Documents/

http://portal.acm.org/citation.cfm?doid=505168.505170
http://portal.acm.org/citation.cfm?doid=505168.505170
http://orr.gov.uk/{_}{_}data/assets/pdf{_}file/0015/22056/passenger-rail-usage-2015-16-q4.pdf
http://orr.gov.uk/{_}{_}data/assets/pdf{_}file/0015/22056/passenger-rail-usage-2015-16-q4.pdf
http://orr.gov.uk/{_}{_}data/assets/pdf{_}file/0015/22056/passenger-rail-usage-2015-16-q4.pdf
https://www.posccaesar.org/wiki/ISO15926Primer{_}ShortHistory
https://www.posccaesar.org/wiki/ISO15926Primer{_}ShortHistory
http://www.fhv.at/media/pdf/forschung/prozess-und-produktengineering/projekte/euridice/euridice-white-paper
http://www.fhv.at/media/pdf/forschung/prozess-und-produktengineering/projekte/euridice/euridice-white-paper
http://www.fhv.at/media/pdf/forschung/prozess-und-produktengineering/projekte/euridice/euridice-white-paper
https://www.w3.org/TR/owl2-primer/
https://www.w3.org/TR/owl2-primer/
https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/owl2-syntax/
http://www.opengis.net/doc/IS/geosparql/1.0
http://www.opengis.net/doc/IS/geosparql/1.0
https://www.rssb.co.uk/rts/Documents/2017-01-27-rail-technical-strategy-capability-delivery-plan-brochure.pdf
https://www.rssb.co.uk/rts/Documents/2017-01-27-rail-technical-strategy-capability-delivery-plan-brochure.pdf

Bibliography 163

2017-01-27-rail-technical-strategy-capability-delivery-

plan-brochure.pdf.

Rail Safety and Standards Board (2004). ‘Glossary of Signalling Terms

Submitted by’. In: April.

Rail Technology Magazine (2015). Back-up signalling solutions in the

event of failure. url: http://www.railtechnologymagazine.com/

Rail- Industry- Focus- /back- up- signalling- solutions- in-

the-event-of-failure (visited on 08/05/2017).

RailML.org (2018). railML. url: https : / / www . railml . org / en /

developer/schemes/documentation.html (visited on 01/03/2018).

Roberts, Clive et al. (2011). Rail Research UK Feasibility Account: The

Specification of a System-wide Data Framework for the Railway In-

dustry–Final Report. Tech. rep. Birmingham.

Rødseth, Ørnulf Jan (2011). ‘A Maritime ITS Architecture for e-Navigation

and e-Maritime : Supporting Environment Friendly Ship Trans-

port’. In: pp. 1156–1161. isbn: 9781457721977.

Rowshandel, H. et al. (2013). ‘An integrated robotic system for auto-

matic detection and characterisation of rolling contact fatigue

cracks in rails using an alternating current field measurement

sensor’. In: Proceedings of the Institution of Mechanical Engineers,

Part F: Journal of Rail and Rapid Transit 227.4, pp. 310–321. issn:

0954-4097. doi: 10.1177/0954409713486778. url: http://www.

scopus.com/inward/record.url?eid=2-s2.0-84883324809{\&

}partnerID=tZOtx3y1.

SPARQL Working Group (2013). SPARQL 1.1 Overview. {W3C} Re-

commendation. W3C. url: https://www.w3.org/TR/sparql11-

overview/.

Santos, Maribel Yasmina and Adriano Moreira (2014). ‘Integrating

Public Transportation Data : Creation and Editing of GTFS Data’.

In: 2, pp. 53–62. issn: 21945357. doi: 10.1007/978-3-319-05948-

8.

https://www.rssb.co.uk/rts/Documents/2017-01-27-rail-technical-strategy-capability-delivery-plan-brochure.pdf
https://www.rssb.co.uk/rts/Documents/2017-01-27-rail-technical-strategy-capability-delivery-plan-brochure.pdf
https://www.rssb.co.uk/rts/Documents/2017-01-27-rail-technical-strategy-capability-delivery-plan-brochure.pdf
http://www.railtechnologymagazine.com/Rail-Industry-Focus-/back-up-signalling-solutions-in-the-event-of-failure
http://www.railtechnologymagazine.com/Rail-Industry-Focus-/back-up-signalling-solutions-in-the-event-of-failure
http://www.railtechnologymagazine.com/Rail-Industry-Focus-/back-up-signalling-solutions-in-the-event-of-failure
https://www.railml.org/en/developer/schemes/documentation.html
https://www.railml.org/en/developer/schemes/documentation.html
https://doi.org/10.1177/0954409713486778
http://www.scopus.com/inward/record.url?eid=2-s2.0-84883324809{\&}partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84883324809{\&}partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84883324809{\&}partnerID=tZOtx3y1
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/sparql11-overview/
https://doi.org/10.1007/978-3-319-05948-8
https://doi.org/10.1007/978-3-319-05948-8

Bibliography 164

Shalyto, Anatoly et al. (2006). ‘State Machine Design Pattern’. In: .NET

Technologies 2006, pp. 51–58.

Siegel, Michael and Stuart E Madnick (1991). ‘Context interchange:

sharing the meaning of data’. In: ACM SIGMOD Record 20.4,

pp. 77–78. issn: 0163-5808. doi: 10.1145/141356.141390.

Smith, Barry and Anand Kumar (2004). ‘On Controlled Vocabularies

in Bioinformatics : A Case Study in the Gene Ontology’. In: 2.6,

pp. 1–15.

Sridaran, R et al. (2013). ‘Cloud Security – Challenges at a Glance’.

In: Management Information Systems 8, pp. 18–24. arXiv: arXiv :

1605.08797v1.

Technical Strategy Leadership Group (2012). THE INDUSTRY ’ S

RAIL TECHNICAL STRATEGY 2012 THE RAIL TECHNICAL STRATEGY

2012. Tech. rep.

The Description Logic Handbook: Theory, Implementation and Applica-

tions (2007). 2nd ed. Cambridge University Press. doi: 10.1017/

CBO9780511711787.

Tutcher, Jon et al. (2013). Ontology-based data management for the GB

rail industry Feasibility study. Tech. rep. RSSB. url: http://www.

sparkrail.org/{_}layouts/Rssb.Spark/Attachments.ashx?

Id=75NEMTS3ZVHP-8-7892.

Tutcher, Jonathan (2015a). ‘Development of Semantic Data Models to

Support Data Interoperability in the Rail Industry’. PhD thesis.

University Of Birmingham. url: http://etheses.bham.ac.uk/

6774/1/Tutcher16PhD.pdf.

— (2015b). ‘Ontology-driven data integration for railway asset mon-

itoring applications’. In: Proceedings - 2014 IEEE International Con-

ference on Big Data, IEEE Big Data 2014, pp. 85–95. doi: 10.1109/

BigData.2014.7004436.

Umiliacchi, Paolo et al. (2011). ‘Predictive maintenance of railway

subsystems using an Ontology based modelling approach’. In:

https://doi.org/10.1145/141356.141390
http://arxiv.org/abs/arXiv:1605.08797v1
http://arxiv.org/abs/arXiv:1605.08797v1
https://doi.org/10.1017/CBO9780511711787
https://doi.org/10.1017/CBO9780511711787
http://www.sparkrail.org/{_}layouts/Rssb.Spark/Attachments.ashx?Id=75NEMTS3ZVHP-8-7892
http://www.sparkrail.org/{_}layouts/Rssb.Spark/Attachments.ashx?Id=75NEMTS3ZVHP-8-7892
http://www.sparkrail.org/{_}layouts/Rssb.Spark/Attachments.ashx?Id=75NEMTS3ZVHP-8-7892
http://etheses.bham.ac.uk/6774/1/Tutcher16PhD.pdf
http://etheses.bham.ac.uk/6774/1/Tutcher16PhD.pdf
https://doi.org/10.1109/BigData.2014.7004436
https://doi.org/10.1109/BigData.2014.7004436

Bibliography 165

pp. 22–26. url: https://osl.eps.hw.ac.uk/files/uploads/

publications/WCRR2011Paperfinalv05.1.pdf{\%}5Cnhttp://

osl.eps.hw.ac.uk/files/uploads/publications/WCRR2011Paperfinalv05.

1.pdf.

Verstichel, S. et al. (2015). ‘LimeDS and the TraPIST project: A case

study - An OSGi-based ontology-enabled framework targeted at

developers in need of an agile solution for building REST/JSON-

based server applications’. In: IC3K 2015 - Proceedings of the 7th

International Joint Conference on Knowledge Discovery, Knowledge En-

gineering and Knowledge Management 2. url: https : / / biblio .

ugent.be/publication/7017884/file/7017888.

Verstichel, Stijn et al. (2011a). ‘Efficient data integration in the rail-

way domain through an ontology-based methodology’. In: . . . Re-

search Part C: . . . Pp. 1–64. url: http://www.sciencedirect.com/

science/article/pii/S0968090X10001609.

— (2011b). ‘Efficient data integration in the railway domain through

an ontology-based methodology’. In: . . . Research Part C: . . . Pp. 1–

64. url: https://biblio.ugent.be/input/download?func=

downloadFile{\&}recordOId=1268227{\&}fileOId=2952548http:

//www.sciencedirect.com/science/article/pii/S0968090X10001609.

Verstichel, Stijn et al. (2014). ‘LimeDS and the TraPIST project : A Case

Study An OSGi-based ontology-enabled framework targeted at

developers in need of an agile solution for building REST / JSON-

based server applications PoC demonstrator’. In: 2.Ic3k, pp. 501–

508.

W3.org (2013). ‘Extensible Markup Language’. In: 1.August. url:

http://www.w3.org/XML/.

Wen, Tao et al. (2015). ‘Co-simulation Testing of Data Communication

System Supporting CBTC’. In: IEEE Conference on Intelligent Trans-

portation Systems, Proceedings, ITSC 2015-Octob, pp. 2665–2670.

doi: 10.1109/ITSC.2015.428.

https://osl.eps.hw.ac.uk/files/uploads/publications/WCRR2011 Paper final v05.1.pdf{\%}5Cnhttp://osl.eps.hw.ac.uk/files/uploads/publications/WCRR2011 Paper final v05.1.pdf
https://osl.eps.hw.ac.uk/files/uploads/publications/WCRR2011 Paper final v05.1.pdf{\%}5Cnhttp://osl.eps.hw.ac.uk/files/uploads/publications/WCRR2011 Paper final v05.1.pdf
https://osl.eps.hw.ac.uk/files/uploads/publications/WCRR2011 Paper final v05.1.pdf{\%}5Cnhttp://osl.eps.hw.ac.uk/files/uploads/publications/WCRR2011 Paper final v05.1.pdf
https://osl.eps.hw.ac.uk/files/uploads/publications/WCRR2011 Paper final v05.1.pdf{\%}5Cnhttp://osl.eps.hw.ac.uk/files/uploads/publications/WCRR2011 Paper final v05.1.pdf
https://biblio.ugent.be/publication/7017884/file/7017888
https://biblio.ugent.be/publication/7017884/file/7017888
http://www.sciencedirect.com/science/article/pii/S0968090X10001609
http://www.sciencedirect.com/science/article/pii/S0968090X10001609
https://biblio.ugent.be/input/download?func=downloadFile{\&}recordOId=1268227{\&}fileOId=2952548 http://www.sciencedirect.com/science/article/pii/S0968090X10001609
https://biblio.ugent.be/input/download?func=downloadFile{\&}recordOId=1268227{\&}fileOId=2952548 http://www.sciencedirect.com/science/article/pii/S0968090X10001609
https://biblio.ugent.be/input/download?func=downloadFile{\&}recordOId=1268227{\&}fileOId=2952548 http://www.sciencedirect.com/science/article/pii/S0968090X10001609
http://www.w3.org/XML/
https://doi.org/10.1109/ITSC.2015.428

Bibliography 166

Westerheim, H (2003). ‘JOINT EFFORT ON ESTABLISHMENT OF

ARKTRANS–A SYSTEM FRAMEWORK ARCHITECTURE FOR

MULTIMODAL TRANSPORT’. In: Citeseer 19, pp. 1–9. url: http:

//scholar.google.com/scholar?hl=en{\&}btnG=Search{\&}q=

intitle:JOINT+EFFORT+ON+ESTABLISHMENT+OF+ARKTRANS+âĂŞ+A+

SYSTEM+FRAMEWORK+ARCHITECTURE+FOR+MULTIMODAL+TRANSPORT+

*{\#}0.

Wood, David et al. (2014). {RDF} 1.1 Concepts and Abstract Syntax.

{W3C} Recommendation. W3C.

Zarembski, Allan M (2014). ‘Some Examples of Big Data in Railroad

Engineering’. In: IEEE BigData 2014. Washington, DC.

Zhang, Ying et al. (2013). ‘A semantic approach to retrieving, linking,

and integrating heterogeneous geospatial data’. In: Joint Proceed-

ings of the Workshop on AI Problems and Approaches for Intelligent

Environments and Workshop on Semantic Cities - AIIP ’13, pp. 31–

37. doi: 10.1145/2516911.2516914. url: http://dl.acm.org/

citation.cfm?id=2516911.2516914.

http://scholar.google.com/scholar?hl=en{\&}btnG=Search{\&}q=intitle:JOINT+EFFORT+ON+ESTABLISHMENT+OF+ARKTRANS+–+A+SYSTEM+FRAMEWORK+ARCHITECTURE+FOR+MULTIMODAL+TRANSPORT+*{\#}0
http://scholar.google.com/scholar?hl=en{\&}btnG=Search{\&}q=intitle:JOINT+EFFORT+ON+ESTABLISHMENT+OF+ARKTRANS+–+A+SYSTEM+FRAMEWORK+ARCHITECTURE+FOR+MULTIMODAL+TRANSPORT+*{\#}0
http://scholar.google.com/scholar?hl=en{\&}btnG=Search{\&}q=intitle:JOINT+EFFORT+ON+ESTABLISHMENT+OF+ARKTRANS+–+A+SYSTEM+FRAMEWORK+ARCHITECTURE+FOR+MULTIMODAL+TRANSPORT+*{\#}0
http://scholar.google.com/scholar?hl=en{\&}btnG=Search{\&}q=intitle:JOINT+EFFORT+ON+ESTABLISHMENT+OF+ARKTRANS+–+A+SYSTEM+FRAMEWORK+ARCHITECTURE+FOR+MULTIMODAL+TRANSPORT+*{\#}0
http://scholar.google.com/scholar?hl=en{\&}btnG=Search{\&}q=intitle:JOINT+EFFORT+ON+ESTABLISHMENT+OF+ARKTRANS+–+A+SYSTEM+FRAMEWORK+ARCHITECTURE+FOR+MULTIMODAL+TRANSPORT+*{\#}0
https://doi.org/10.1145/2516911.2516914
http://dl.acm.org/citation.cfm?id=2516911.2516914
http://dl.acm.org/citation.cfm?id=2516911.2516914

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Thesis
	1 Introduction
	1.1 Overview
	1.1.1 What is ontology
	1.1.2 Barriers to adoption

	1.2 Aims and Objectives
	1.3 Thesis organisation
	1.4 Papers published over the course of this research

	2 Literature Review
	2.1 Current State of Data Integration in the Rail Domain
	2.1.1 Information Security in the Rail Domain

	2.2 Ontology
	2.2.1 Ontology Reasoning
	2.2.2 Ontology related terminology

	2.3 Standards for data integration
	2.3.1 Basic Standards

	2.4 Software tools
	2.5 Benefits of ontology for data integration
	2.5.1 Multi-modal transport

	2.6 Data integration in other industries
	2.6.1 Industries implementing Ontology
	2.6.2 Other Domains
	2.6.3 Virtual Personal Assistants

	2.7 Progress towards improved data integration in the rail domain
	2.7.1 Non-ontology data integration
	2.7.2 Ontology based integration within the rail domain

	2.8 Conclusions

	3 Problem Statement
	4 Schedule Processing Tool
	4.1 Introduction
	4.2 Transition to Linked Data
	4.2.1 Extending the ontology
	4.2.2 Tools for processing A-Box data

	4.3 Data to be imported
	4.3.1 Legacy Resource Format

	4.4 General Software Design Patterns
	4.5 Software implementation
	4.5.1 Hardware Specification

	4.6 Manual Data Entry Tool
	4.6.1 Manual Data Entry Tool: Implementation

	4.7 Results
	4.8 Conclusions
	4.9 Further Work

	5 Use of a Middleware Layer with Ontologies
	5.1 Introduction
	5.1.1 Questions Considered
	5.1.2 Roles
	5.1.3 Data Volumes

	5.2 Functionality
	5.2.1 Brokering: acting as an intermediary between client and server
	5.2.2 Datastore aggregation
	5.2.3 Stored Procedures
	5.2.4 Information Security
	5.2.5 Centralising Common Functionality

	5.3 Middleware Design Patterns
	5.4 Implementation
	5.4.1 Modular Structure
	5.4.2 RacoonMiddleware
	5.4.3 MiddlewareBussinessObjects
	5.4.4 Datastore connections
	5.4.5 Administration Tools

	5.5 Access Control Implementation
	5.6 Conclusions
	5.7 Further work
	5.7.1 Outstanding Questions

	6 Combined Alternative Positioning and Signalling System
	6.1 Introduction
	6.1.1 Commercial Partners
	6.1.2 The commercial case for degraded mode signalling
	6.1.3 Objectives
	6.1.4 Client Requirements
	6.1.5 Questions Considered

	6.2 System design and specification
	6.2.1 Demonstrated scenarios
	6.2.2 System Architecture

	6.3 Data Sources
	6.4 Role of Ontology
	6.5 Demonstrator Implementation
	6.5.1 Demonstrator One
	6.5.2 Demonstrator Two

	6.6 Conclusions
	6.6.1 Benefits of Ontology
	6.6.2 Role of tools to connect to the ontology
	6.6.3 Questions Answered

	6.7 Further Work
	6.7.1 Changing triple store

	7 Conclusions and Further work
	7.1 Response to Research Questions
	7.1.1 Given the diverse information environment within the rail industry, how can heterogeneous datasources be combined, where there is value in so doing?
	7.1.2 Given the current shortage of engineers with experience editing or connecting to ontologies, is it possible to create tools which improve their uptake and adoption?
	7.1.3 Given that many stakeholders can benefit from combining multiple data sources, what techniques enable this?
	7.1.4 Can an intermediary layer isolate information systems from changes to datastore interfaces?
	7.1.5 Given the velocity and volume of data within the rail domain, can an ontology based architecture be deployed on the scale of a national rail network?
	7.1.6 How can datastore security be managed within the setting of an ontology and IT infrastructure?

	7.2 Further Work

	Appendix
	A Appendix A Manual Data Entry Tool GUI
	A.1 Add an item

	B Stored procedure
	Bibliography

